Higher Education Web Information System Usage Analysis with a Data Webhouse

  • Carla Teixeira Lopes
  • Gabriel David
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3983)


Usage analysis of a Web Information System is a valuable help to predict user needs, to assess system’s impact and to guide to its improvement. This is usually done analysing clickstreams, a low-level approach, with huge amounts of data that calls for data warehouse techniques. This paper presents a dimensional model to monitor user behaviour in Higher Education Web Information Systems and an architecture for the extraction, transformation and load process. These have been applied in the development of a data warehouse to monitor the use of SIGARRA, the University of Porto’s Higher Education Web Information System. The efficiency and effectiveness of this monitorization method were confirmed by the knowledge extracted from a 3 month period analysis. A brief description of the main results and recommendations are also described.


Dimensional Model User Type Fact Table Anonymous User Staging Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, J., Giversen, A., Jensen, A.H., Larsen, R.S., Pedersen, T.B., Skyt, J.: Analyzing Clickstreams Using Subsessions. In: Proceedings of the 3rd ACM International Workshop on Data Warehousing and OLAP, pp. 25–32. ACM Press, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Berendt, B., Spiliopoulou, M.: Analysis of Navigation Behaviour in Web Sites Integrating Multiple Information Systems. The VLDB Journal 9(1), 56–75 (2000)CrossRefGoogle Scholar
  3. 3.
    Chen, M.S., Park, J.S., Yu, P.S.: Data Mining for Path Traversal Patterns in a Web Environment. In: Proceedings of the 16th International Conference on Distributed Computing Systems (ICDCS 1996), p. 385. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar
  4. 4.
    Cooley, R.: The Use of Web Structure and Content to Identify Subjectively Interesting Web Usage Patterns. ACM Trans. Inter. Tech. 3(2), 93–116 (2003)CrossRefGoogle Scholar
  5. 5.
    Cooley, R., Mobasher, B., Srivastava, J.: Data Preparation for Mining World Wide Web Browsing Patterns. Knowledge and Information Systems 1(2) (1999)Google Scholar
  6. 6.
    Eirinaki, M., Vazirgiannis, M.: Web Mining for Web Personalization. ACM Trans. Inter. Tech. 3(1), 1–27 (2003)CrossRefGoogle Scholar
  7. 7.
    Joshi, K.P., Joshi, A., Yesha, Y., Krishnapuram, R.: Warehousing and Mining Web Logs. In: Proceedings of the Second International Workshop on Web Information and Data Management, pp. 63–68. ACM Press, New York (1999)CrossRefGoogle Scholar
  8. 8.
    Kimball, R., Merz, R.: The Data Webhouse Toolkit. John Wiley & Sons, Inc, Chichester (2000)Google Scholar
  9. 9.
    Kimball, R., Reeves, L., Ross, M., Thornthwaite, W.: The Data Warehouse Lifecycle Toolkit. John Wiley & Sons, Inc., Chichester (1998)Google Scholar
  10. 10.
    Kohavi, R.: Mining e-Commerce Data: The Good, The Bad, and The Ugly. In: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 8–13. ACM Press, New York (2001)CrossRefGoogle Scholar
  11. 11.
    Li, R., Salz, J.: Clickstream Data Warehousing. ArsDigita Systems Journal (2000), Available from, [cited September 11, 2005)
  12. 12.
    Masand, B.M., Spiliopoulou, M., Srivastava, J., Zaiane, O.R.: WEBKDD 2002: Web Mining for Usage Patterns & Profiles. SIGKDD Explor. Newsl. 4(2), 125–127 (2002)CrossRefGoogle Scholar
  13. 13.
    Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data. SIGKDD Explor. Newsl. 1(2), 12–23 (2000)CrossRefGoogle Scholar
  14. 14.
    Sweiger, M., Madsen, M.R., Langston, J., Lombard, H.: Clickstream Data Warehousing. John Wiley & Sons, Inc., Chichester (2002)Google Scholar
  15. 15.
    Yan, T.W., Jacobsen, M., Garcia-Molina, H., Dayal, U.: From User Access Patterns to Dynamic Hypertext Linking. Computer Networks ISDN System 28(7-11), 1007–1014 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Carla Teixeira Lopes
    • 1
  • Gabriel David
    • 2
  1. 1.ESTSP/FEUPPortugal
  2. 2.INESC-Porto/FEUPPortugal

Personalised recommendations