An Efficient Key Distribution for Ubiquitous Environment in Ad-Hoc Network Using Broadcast Encryption

  • Deok-Gyu Lee
  • Jang-Su Park
  • Im-Yeong Lee
  • Yong-Seok Park
  • Jung-Chul Ahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3983)


Broadcast encryption schemes are applied to transmit digital information of multimedia, software, Pay-TV etc. in public network. Important thing is that only user who is permitted before only must be able to get digital information in broadcast encryption schemes. If broadcast message transfers, users who authority is get digital information to use private key given in the advance by oneself. Thus, user acquires message or session key to use key that broadcaster transmits, broadcaster need process that generation and distribution key in these process. Also, user secession new when join efficient key renewal need. In this paper, introduce about efficient key generation and distribution, key renewal method. Take advantage of two technique of proposal system. One is method that server creates key forecasting user without user’s agreement, and another is method that server and user agree each other and create key. Advantage of two proposal system because uses a secret key broadcast message decryption do can and renewal is available effectively using one information whatever key renewal later.


Content Provider Broadcast Message User Participation Center Device Propose Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Blundo, C., Mattos, L.A.F., Stinson, D.R.: Generalized Beimel-Chor schemes for Broadcast Enryption and Interactive Key Distribution. In: CRYPTO 1996. LNCS, vol. 1109, Springer, Heidelberg (1996)Google Scholar
  3. 3.
    Blundo, C., Mattos, L.A.F., Stinson, D.R.: Trade-offs Between Communication and Storage in Unconditionally Secure Schemes for Broadcast Encryption and Interactive Key Distribution. In: CRYPTO 1996 (1998)Google Scholar
  4. 4.
    Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 333–352. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Gracia, I., Martin, S., Padro, C.: Improving the Trade-off Between Storage and Communication in Broadcast Encryption Schemes (2001)Google Scholar
  6. 6.
    Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Fazio, N.: Public key broadcast encryption for stateless receivers. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol. 2696, pp. 61–80. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Beaver, D., So, N.: Global, Unpredictable Bit Generation Without Broadcast (1993)Google Scholar
  9. 9.
    Abdalla, M., Shavitt, Y., Wool, A.: Towards making broadcast encryption practical. In: Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, p. 140. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Lee, D.H., Kim, H.J., Lim, J.I.: Efficient Public-Key Traitor Tracing in Provably Secure Broadcast Encryption with Unlimited RevocationGoogle Scholar
  11. 11.
    Narayanan, A.: Practical Pay TV schemes. To appear in the Proceedings of ACISP 2003 (July 2003)Google Scholar
  12. 12.
    Bobba, R.B., Eschenauer, L., Gligor, V., Arbaugh, W.A.: Bootstrapping Security Associations for Routing in Mobile Ad-Hoc Networks. Technical Report, Institute for Systems Research, UMd, TR 2002-44 (2002)Google Scholar
  13. 13.
    Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: International Workshop on Practice and Theory in Public Key Cryptography (January 2003)Google Scholar
  14. 14.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 512–532. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman Groups. In: International Workshop on Practice and Theory in Public Key Cryptography (January 2003)Google Scholar
  17. 17.
    Dahill, B., Levine, B., Royer, E., Shields, C.: A Secure Routing Protocol for Ad Hoc Networks. Technical Report UM-CS-2001-037, University of Massachusetts (August 2001)Google Scholar
  18. 18.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 295. Springer, Heidelberg (1999)Google Scholar
  19. 19.
    Hu, Y.-C., Johnson, D., Perrig, A.: SEAD: Secure Efficient Distance Vector Routing for Mobile Wireless Ad Hoc Networks. In: Workshop on Mobile Computing Systems and Applications, June 2002. IEEE, Los Alamitos (2002)Google Scholar
  20. 20.
    Hu, Y.-C., Johnson, D.B., Perrig, A.: Secure On-Demand Routing Protocols in Ad Hoc Networks. Unpublished (2001)Google Scholar
  21. 21.
    Khalili, A., Arbaugh, W.A.: Security of wireless ad-hoc networks. Work in progress (2002),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Deok-Gyu Lee
    • 1
  • Jang-Su Park
    • 1
  • Im-Yeong Lee
    • 1
  • Yong-Seok Park
    • 2
  • Jung-Chul Ahn
    • 2
  1. 1.Division of Information Technology EngineeringSoonchunhyang UniversityAsan-si, Choongchungnam-doKorea
  2. 2.National Security Research InstituteKorea

Personalised recommendations