Advertisement

A Web Page Ranking Method by Analyzing Hyperlink Structure and K-Elements

  • Jun Lai
  • Ben Soh
  • Chai Fei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3983)

Abstract

The tremendous growth of the web has created challenges for the search engine technology. In this paper we propose a method for information retrieval and web page ranking by analyzing hyperlink structure on the web graph and the weight of keywords. Hyperlink structure analysis measures page importance by calculating the page weight based on links. This method is not counting links from all pages equally, but by normalizing the number of links on a page. The weight of keywords is computed from the elements, keywords and anchors, which we call K-elements. A linear combination of the hyperlink structure and the weight of keywords is proposed and evaluated to rank web pages. In the evaluation, we take into consideration both the importance and relevance of a page.

Keywords

Information retrieval search engine web crawlers hyperlinks elements keywords World Wide Web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. Technical report, Stanford University Database Group (Janaury 1998), http://dbpubs.stanford.edu/pub/1999-66
  2. 2.
    Kleinberg, J.: Authoritative Sources in a Hyperlinked Environment. Journal of the ACM (JACM) 46(5) (1999)Google Scholar
  3. 3.
    Botafogo, R., Rivlin, E., Shneiderman, B.: Structural analysis of hypertext: Identifying hierarchies and useful metrics. ACM Transactions and Information Systems 10(2) (1992)Google Scholar
  4. 4.
    Bharat, K., Henzinger, M.: Improved Algorithms for Topic Distillation in a Hyperlinked Environment. In: Proceedings of ACM 21st International SIGIR 1998, pp. 104–111 (1998)Google Scholar
  5. 5.
    Charkrabarti, S., Dom, B.: Automatic Resource Compilation by Analysing Hyperlink Structure and Associated Text. In: Proc. The 7th International World Wide Web Conference, pp. 389–401 (1998)Google Scholar
  6. 6.
    Jiang, X., et al.: Exploiting pageRank at different block level. In: Zhou, X., Su, S., Papazoglou, M.P., Orlowska, M.E., Jeffery, K. (eds.) WISE 2004. LNCS, vol. 3306, pp. 241–252. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Page, L., Brin, S.: The Anatomy of a Large-Scale Hypertextual Web Search EngineGoogle Scholar
  8. 8.
    McBryan, O.A.: GENVL and WWWW: Tools for Taming the Web. In: 1st International Conference on the World Wide Web, CERN, Geneva, Switzerland, May 25-27 (1994), http://www.cs.colorado.edu/home/mcbryan/mypapers/www94.ps
  9. 9.
  10. 10.
    Angelaccio, M., Buttarazzi, B.: Local searching the internet. Internet Computing, IEEE 6(1), 25–33 (2002)CrossRefGoogle Scholar
  11. 11.
    Hartigan, J.A.: Clustering Algorithms. WILEY Publication, Chichester (1975)zbMATHGoogle Scholar
  12. 12.
    Salton, G.: Automatic Text Processing. Addison-Wesley Publishing, Reading (1989)Google Scholar
  13. 13.
    Sankaran, N.: Speculation in the biomedical community abounds over likely candidates for nobel. The Scientist 9(19) (October 1995) http://www.the-scientist.com/1995/10/02/1/1
  14. 14.
    Lai, J., Soh, B.: CRANAI: A New Search Model Reinforced by Combining a Ranking Algorithm with Author Inputs. In: IEEE International Conference on e-Business Engineering, ICEBE 2005, Beijing, China, pp. 340–345 (2005)Google Scholar
  15. 15.
    Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating “word of mouth”. In: Proceedings of CHI 1995 Conference on Human Factors in Computing Systems, pp. 210–217. ACM Press, New York (1995)CrossRefGoogle Scholar
  16. 16.
    Basu, C., Hirsh, H., Cohen, W.: Recommendations as classification: Using social and content-based information in recommendation. In: Proceedings of AAAI 1998. American Association for Artificial Intelligence (1998)Google Scholar
  17. 17.
    Weng, S.S., Liu, M.J.: Personalized product recommendation in E-Commerce. In: Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service, pp. 413–420 (2004)Google Scholar
  18. 18.
    Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.P.: A system for sharing recommendations. Communications of the ACM 40(3) (1997)Google Scholar
  19. 19.
    Rucker, J., Polanco, M.J.: Personalized navigation for the web. Communications of the ACM 40(3) (1997)Google Scholar
  20. 20.
    Lai, J., Soh, B.: Using Element And Document Profile For Information Clustering. In: Proceedings of the 2004 IEEE International Conference on e-Technology, e-Commerce and e-Service, pp. 503–506 (2004)Google Scholar
  21. 21.
    Baeza-Yates, R., Ribeironeto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)Google Scholar
  22. 22.
    Anick, P.G., Vaithyanathan, S.: Exploiting clustering and phrases for context-based information retrieval. SIGIR Forum 31(1), 314–323 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jun Lai
    • 1
  • Ben Soh
    • 1
  • Chai Fei
    • 2
  1. 1.Department of Computer Science and Computer EngineeringLaTrobe University BundooraMelbourneAustralia
  2. 2.Beijing Army General HospitalBeijingChina

Personalised recommendations