Advertisement

New Constructions of Universal Hash Functions Based on Function Sums

  • Khoongming Khoo
  • Swee-Huay Heng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3982)

Abstract

In this paper, we propose a generalization of the SQUARE hash function family to the function sum hash, which is based on functions with low maximal differential over arbitrary Abelian groups. These new variants allow the designer to construct SQUARE-like hash functions on different platforms for efficient and secure message authentication. A variant using functions with low algebraic degree over a finite field is also proposed which enables the user to use a shorter key. For more versatility, we also propose a trade-off between the hash key length and security bound. Finally, we show that we can use an SPN structure in the function sum hash to construct a provably secure MAC with performance which is several times faster than the traditional CBC-MAC. Moreover, there are implementation advantages like parallelizability to increase the speed further and re-use of cipher components which help save on implementation resources.

Keywords

Message authentication codes universal hash functions low maximal differential low algebraic degree substitution permutation network (SPN) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ash, D., Blake, I., Vanstone, S.: Low complexity normal bases. Discrete Applied Mathematics 25, 191–210 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4(1), 3–72 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and secure message authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 216–233. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Brassard, G.: On computationally secure authentication tags requiring short secret shared keys. In: McCurley, K.S., Ziegler, C.D. (eds.) Advances in Cryptology 1999. LNCS, vol. 1440, pp. 79–86. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Budaghyan, L., Carlet, C., Pott, A.: New Classes of Almost Bent and Almost Perfect Nonlinear Functions. In: Proceedings of Workshop on Coding and Cryptography 2005, pp. 306–315 (2005)Google Scholar
  6. 6.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal of Computer and System Sciences 18(2), 143–154 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Etzel, M., Patel, S., Ramzan, Z.: SQUARE HASH: Fast message authentication via optimized universal hash functions. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 234–251. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Halevi, S., Krawczyk, H.: MMH: Message authentication in software in the gbit/second rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 172–189. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Helleseth, T.: Correlation of m-sequences and related topics. In: Sequences and their Applications, SETA 1998, pp. 49–66 (1999)Google Scholar
  10. 10.
    Helleseth, T., Johansson, T.: Universal hash functions from exponential sums over finite fields and galois rings. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 31–44. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Heng, S.-H., Kurosawa, K.: Square hash with a small key size. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 522–531. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Khoo, K., Heng, S.-H.: Universal Hash Functions over GF(2n). In: Proceedings of 2004 IEEE International Symposium on Information Theory — ISIT 2004, p. 205. IEEE Press, Los Alamitos (2004)Google Scholar
  13. 13.
    Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Krawczyk, H.: New hash functions for message authentication. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 301–310. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Shoup, V.: On fast and provably secure message authentication based on universal hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Stinson, D.R.: On the connections between universal hashing, combinatorial designs and error-correcting codes. Congressus Numerantium 114, 7–27 (1996)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication and set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Khoongming Khoo
    • 1
  • Swee-Huay Heng
    • 2
  1. 1.DSO National LaboratoriesSingapore
  2. 2.Faculty of Information Science and TechnologyMultimedia UniversityMelakaMalaysia

Personalised recommendations