Efficient Partially Blind Signatures with Provable Security

  • Qianhong Wu
  • Willy Susilo
  • Yi Mu
  • Fanguo Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3982)


Blind signatures play a central role in applications such as e-cash and e-voting systems. The notion of partially blind signature is a more applicable variant such that the part of the message contains some common information pre-agreed by the signer and the signature requester in an unblinded form. In this paper, we propose two efficient partially blind signatures with provable security in the random oracle model. The former is based on witness indistinguishable (WI) signatures. Compared with the state-of-the-art construction due to Abe and Fujisaki [1], our scheme is 25% more efficient while enjoys the same level of security. The latter is a partially blind Schnorr signature without relying on witness indistinguishability. It enjoys the same level of security and efficiency as the underlying blind signature.


Blind Signature Common Information Discrete Logarithm Problem Valid Signature Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Chaum, D.: Blind signatures for untraceable payments. In: Crypto 1982, pp. 199–204. Prenum Publishing Corporation (1982)Google Scholar
  5. 5.
    Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two improved partially blind signature schemes from bilinear pairings. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 316–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Piveteau, J.-M., Stadler, M.: Blind signatures based on the discrete logarithm problem. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 428–432. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. 7.
    Fan, C.I., Lei, C.L.: Low-computation partially blind signatures for electronic cash. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E81- A(5) , 818–824 (1998)Google Scholar
  8. 8.
    Horster, H., Michels, M., Petersen, H.: -message recovery and meta-blind signature schemes based on the discrete logarithm problem and their applications. In: Asiacrypt 1992. LNCS, vol. 917, pp. 224–237. Springer, Heidelberg (1992)Google Scholar
  9. 9.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Okamoto, T., Ohta, K.: Divertible zero knowledge interactive proofs and commutative random self-reducibility. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 134–149. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–369. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  14. 14.
    Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Schnorr, C.: Security of blind discrete log signatures against interactive attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Zhang, F., Kim, K.: Efficient ID-Based blind signature and proxy signature from bilinear pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 312–323. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient verifiably encrypted signature and partially blind signature from bilinear pairings. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55, 165–172 (1994)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Shoup, V.: Low bounds for discrete logarithems and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Maitl, G., Boyd, C.: A provably secure restrictive partially blind signature scheme. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 99–114. Springer, Heidelberg (2002)Google Scholar
  22. 22.
    Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qianhong Wu
    • 1
  • Willy Susilo
    • 1
  • Yi Mu
    • 1
  • Fanguo Zhang
    • 2
  1. 1.School of Information Technology and Computer ScienceUniversity of WollongongWollongongAustralia
  2. 2.School of Information Science and TechnologySun Yat-sen UniversityGuangzhouP.R. China

Personalised recommendations