Advertisement

Traceable Signature: Better Efficiency and Beyond

  • He Ge
  • Stephen R. Tate
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3982)

Abstract

In recent years one of the most active research areas in applied cryptography is the study of techniques for creating a group signature, a cryptographic primitive that can be used to implement anonymous authentication. Some variants of group signature, such as traceable signature, and authentication with variable anonymity in a trusted computing platform, have also been proposed. In this paper we propose a traceable signature scheme with variable anonymity. Our scheme supports two important properties for a practical anonymous authentication system, i.e., corrupted group member detection and fair tracing, which have unfortunately been neglected in most group signature schemes in the literature. We prove the new scheme is secure in the random oracle model, under the strong RSA assumption and the decisional Diffie-Hellman assumption.

Keywords

Group signature Traceable Signature Anonymous Authentication Variable Anonymity Cryptographic Protocol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Baric, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Advances in Cryptology — Eurocrypto, pp. 480–494 (1997)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient procotols. In: ACM Conference on Computer and Communication Security, pp. 62–73 (1993)Google Scholar
  4. 4.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM Conference on Computer and Communications Security, pp. 132–145 (2004)Google Scholar
  5. 5.
    Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Stadler, M.: A group signature scheme with improved efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Chaum, D., van Heyst, E.: Group signature. In: Advances in Cryptology — Eurocrypt, pp. 390–407 (1992)Google Scholar
  11. 11.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Advances in Cryptology — Crypto, pp. 10–18 (1984)Google Scholar
  12. 12.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  13. 13.
    Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Advances in Cryptology — Crypto, pp. 16–30 (1997)Google Scholar
  14. 14.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • He Ge
    • 1
  • Stephen R. Tate
    • 1
  1. 1.Dept. of Computer Science and EngineeringUniversity of North Texas 

Personalised recommendations