Skip to main content

Approximation of Optimal Moving Paths of Huge Robot Reclaimer with a 3D Range Finder

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Included in the following conference series:

Abstract

This paper proposes a simple method for approximating the optimal moving paths of a huge robot reclaimer located in the outdoor material stock yard with emphasis on safety, energy consumption, and transfer time. The reclaimer is equipped with a 3D range finder to measure the shape of material piles in the yard, and the material yard is modeled into 3D space where 2D section of grid type is constructed in several layers. To define a safety function against moving between grids, a simplified Voronoi diagram that has a minimized extension error of vertex is used. In addition, the function of energy consumption and transfer time required when the control point of the reclaimer moves between 3D grids is defined. This is used as a cost evaluation factor of path optimization along with the safety function. The proposed method can be readily applied to low-performance industrial control devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canny, J., Donald, B.: Simplified Voronoi Diagrams. Discrete & Computational Geometry 3, 219–236 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bajaj, C., Kim, M.-S.: Algorithms for Planar Geometric Models. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 67–81. Springer, Heidelberg (1988)

    Google Scholar 

  3. Canny, J.: The Complexity of Robot Motion Planning, pp. 128–147. MIT press, Cambridge (1987)

    Google Scholar 

  4. Choi, C.-T., Lee, K.-H., Shin, K.-T., Hong, K.-S., Ahn, H.-S.: Automatic Landing Method of a Reclaimer on the Stockpile. IEEE Trans. on System, Man, and Cybernetics-Part C: Applications and Reviews 29(1), 308–314 (1999)

    Article  Google Scholar 

  5. Baase, S.: Computer Algorithms: Introduction to Design and Analysis, 2nd edn. (1988)

    Google Scholar 

  6. Walker, R.: Algebraic Curves. Springer, New York (1978)

    MATH  Google Scholar 

  7. Lee, J.G., Chung, H.Y.: Global Path Planning for Mobile Robot with Grid-Type World Model. Robotics & Computer-Integrated Manuf. 11(1), 13–21 (1994)

    Article  Google Scholar 

  8. Chen, M., Zalzala, A.M.S.: A Genetic Approach to Motion Planning of Redundant Mobile Manipulator Systems Considering Safety and Configuration. Journal of Robotic Systems 14(7), 529–544 (1997)

    Article  MATH  Google Scholar 

  9. Foskey, M., Garber, M., Lin, M.C., Manocha, D.: A Voronoi-Based Hybrid Motion Planner for Rigid Bodies. Intelligent Robotics and Systems 1, 55–60 (2001)

    Google Scholar 

  10. Takahashi, O., Schilling, R.J.: Motion Planning in a Plane Using Generalized Voronoi Diagrams. IEEE Trans. on Robotics and Automation 5(2) (April 1989)

    Google Scholar 

  11. Hoff, K., Culver, T., Keyser, J.: Interactive motion planning using hardware-accelerated computation of generalized Voronoi diagrams. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 2931–2937 (2000)

    Google Scholar 

  12. Suh, S.-H., Shin, K.G.: A variational dynamic programming approach to robot-path planning with a distance-safety criterion. IEEE Journal of Robotics and Automation 4(3), 334–349 (1988)

    Article  Google Scholar 

  13. Sun, K., Lumelsky, V.: Path planning among unknown obstacles: the case of a three-dimensional Cartesian arm. IEEE Trans. on Robotics and Automation, 776–786 (1992)

    Google Scholar 

  14. Alexander, R.S., Rowe, N.C.: Path Planning by Optimal-Path-Map Construction for Homogeneous-Cost Two-Dimensional Regions. In: IEEE Int. Conf. Robotics and Automation, pp. 1924–1929 (1990)

    Google Scholar 

  15. Lumelsky, V.J., Mukhopadhyay, S., Sun, K.: Dynamic Path Planning in Sensor-Based Terrain Acquisition. IEEE Trans. Robotics and Automation 6(4), 462–472 (1990)

    Article  Google Scholar 

  16. Lozano-Perez, T.: Spatial planning: A configuration space approach. IEEE Trans. Comput. C-32, 108–120 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Surmann, H., Nuechter, A., Hertzberg, J.: An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robotics and Autonomous Systems, 181–198 (2003)

    Google Scholar 

  18. Miura, J., Negishi, Y., Shirai, Y.: Mobile Robot Map Generation by Integrating Omnidirectional Stereo and Laser Range Finder. In: Proceedings of 2002 IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, pp. 250–255 (2002)

    Google Scholar 

  19. Aboshosha, A., Zell, A.: Robust mapping and path planning for indoor robots based on sensor integration of sonar and a 2D laser range finder. In: IEEE 7th International Conference on Intelligent Engineering Systems (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, KH., Bae, HJ., Hong, SJ. (2006). Approximation of Optimal Moving Paths of Huge Robot Reclaimer with a 3D Range Finder. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_17

Download citation

  • DOI: https://doi.org/10.1007/11751540_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics