Skip to main content

The BRASS Project, from Physical Models to Virtual Musical Instruments: Playability Issues

  • Conference paper
Computer Music Modeling and Retrieval (CMMR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3902))

Included in the following conference series:

Abstract

The Brass project aims to deliver software virtual musical instruments (trumpet, trombone, tenor saxophone) based on physical modelling. This requires to work on some aspects of the playability of the models so that they can be played in real time through a simple keyboard : better control of the attacks, automatic tuning, humanization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, J.O.: Virtual acoustic musical instruments: Review and update. Journal of New Music Research 33(3), 283–304 (2004)

    Article  Google Scholar 

  2. Välimäki, V.: Physics based modeling of musical instruments. Acta Acustica united with Acustica 4(611-617) (2004)

    Google Scholar 

  3. McIntyre, M.E., Schumacher, R.T., Woodhouse, J.: On the oscillations of musical instruments. J. Acoust. Soc. Amer. 74, 1325–1345 (1983)

    Article  Google Scholar 

  4. Vergez, C., Rodet, X.: Comparison of real trumpet playing, latex model of lips and computer model. In: Procedings ICMC 1997, Thessalonike, September 1997, pp. 180–187 (1997)

    Google Scholar 

  5. Vergez, C., Rodet, X.: Trumpet and trumpet player: physical modeling in a musical context. In: Proceedings of the International Congress of Acoustics (ICA), p. CDROM no. IV, Rome (2001)

    Google Scholar 

  6. Vergez, C., Rodet, X.: New algorithm for nonlinear propagation of a sound wave. application to a physical model of a trumpet. Journal of Signal Processing, Special issue on nonlinear signal processing 4(1), 79–87 (2000)

    Google Scholar 

  7. Vergez, C., Rodet, X.: Air flow related improvements for basic physical models of brass instruments. In: Proceedings of ICMC 2000, Berlin, Germany (August 2000)

    Google Scholar 

  8. Elliott, S.J., Bowsher, J.M.: Regeneration in Brass Wind Instruments. Journal of Sound and Vibration 83(2), 181–217 (1982)

    Article  Google Scholar 

  9. Almeida, A., Vergez, C., Caussé, R., Rodet, X.: Physical model of an oboe: comparison with experiments. In: International Symposium on Musical Acoustics, Nara, Japan, April 2004, pp. 112–115 (2004)

    Google Scholar 

  10. Ishizaka, K., Flanagan, J.L.: Synthesis of voiced sounds from a two-mass model of the vocal cords. Technical report, Bell. Syst. Techn. J. (1972)

    Google Scholar 

  11. Bailliet, H.: Modelling of the French Horn-Player system. Master’s thesis, INSA Toulouse (September 1994)

    Google Scholar 

  12. Strong, W.J.: Computer Simulation of a Trumpet. J. Acoust. Soc. Amer. Suppl. 1(87), S138 (1990)

    Google Scholar 

  13. Rodet, X., Depalle, P., Fleury, G., Lazarus, F.: Modèles de signaux et modèles physiques d’instruments: études et comparaisons. In: Actes du Colloque Modèles Physiques de Grenoble (1990)

    Google Scholar 

  14. Adachi, S., Sato, M.: Trumpet sound simulation using a two-dimensional lip vibration model. J. Acoust. Soc. Amer. 99(2), 1200–1209 (1996)

    Article  Google Scholar 

  15. Bouasse, H.: Instruments à vent. Delgrave, (1929), ré-édité par Blanchard, Paris (1986)

    Google Scholar 

  16. Yeh, C., Röbel, A., Rodet, X.: Multiple fundamental frequency estimation of polyphonic music signals. In: Proceedings of ICASSP, vol. III, pp. 225–228 (2005)

    Google Scholar 

  17. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem.Phys. 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  18. Press, W.H., Teukolsky, S.A., Vetterling, X.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  19. Ingber, L.: Very fast simulated re-annealing. J. Math. Comput. Modelling 12, 967–973 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peeters, G., Mac Adams, S., Herrera, P.: Instrument sound description in the context of mpeg-7. In: Proceeding of ICMC, August 27th-September 1st, 2000, Berlin, Germany, (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vergez, C., Tisserand, P. (2006). The BRASS Project, from Physical Models to Virtual Musical Instruments: Playability Issues. In: Kronland-Martinet, R., Voinier, T., Ystad, S. (eds) Computer Music Modeling and Retrieval. CMMR 2005. Lecture Notes in Computer Science, vol 3902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751069_2

Download citation

  • DOI: https://doi.org/10.1007/11751069_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34027-0

  • Online ISBN: 978-3-540-34028-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics