Skip to main content

On Probe Permutation Graphs

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3959))

Abstract

Given a class of graphs \(\mathcal{G}\), a graph G is a probe graph of \(\mathcal{G}\) if its vertices can be partitioned into two sets ℙ, the probes, and ℕ, the nonprobes, where ℕ is an independent set, such that G can be embedded into a graph of \(\mathcal{G}\) by adding edges between certain vertices of ℕ. If the partition of the vertices into probes and nonprobes is part of the input, then we call the graph a partitioned probe graph of \(\mathcal{G}\). In this paper, we provide a recognition algorithm for partitioned probe permutation graphs with time complexity O(n 2) where n is the number of vertices in the input graph. We show that there are at most O(n 4) minimal separators for a probe permutation graph. As a consequence, there exist polynomial-time algorithms solving treewidth and minimum fill-in problems for probe permutation graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berry, A., Golumbic, M.C., Lipshteyn, M.: Two tricks to triangulate chordal probe graphs in polynomial time. In: Proceedings of the 15th. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 962–969 (2004)

    Google Scholar 

  • Bodlaender, H., Kloks, T., Kratsch, D.: Treewidth and Pathwidth of permutation graphs. SIAM Journal on Discrete Mathematics 8, 606–616 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  • Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • Bouchitte, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM Journal on Computing 31, 212–232 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Chang, M.-S., Kloks, T., Kratsch, D., Liu, J., Peng, S.-L.: On the recognition of probe graphs of some self-complementary graph classes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 808–817. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Chang, G.J., Kloks, A.J.J., Liu, J., Peng, S.-L.: The PIGs full monty—A floor show of minimal separators. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 521–532. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  • Cowan, D.D., James, L.O., Stanton, R.G.: Graph decomposition for undirected graphs. In: 3rd South-Eastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas Math pp. 281–290 (1972)

    Google Scholar 

  • Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Sci. Hung. 18, 25–66 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  • Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  • Golumbic, M.C., Lipshsteyn, M.: Chordal probe graphs. Discrete Applied Mathematics 143, 221–237 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Golumbic, M.C., Trenk, A.N.: Tolerance Graphs, Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  • Habib, M., de Montgolfier, F., Paul, C.: A simple linear-time modular decomposition algorithm for graphs, using order extensions. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 187–198. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  • Hertz, A.: Slim graphs. Graphs and Combinatorics 5, 149–157 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • Johnson, J.L., Spinrad, J.P.: A polynomial time recognition algorithm for probe interval graphs. In: Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms 2001, pp. 477–486 (2001)

    Google Scholar 

  • Kelly, D.: Comparability graphs. In: Rival, I. (ed.) Graphs and Orders, pp. 3–40 D. Reidel Pub. Comp (1985)

    Google Scholar 

  • Kloks, T., Kratsch, D.: Listing all minimal separators of a graph. SIAM Journal on Computing 27, 605–613 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Mathematics 201, 189–241 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • McConnell, R.M., Spinrad, J.: Construction of probe interval graphs. In: Proceedings 13th ACM–SIAM Symposium on Discrete Algorithms 2002, pp. 866–875 (2002)

    Google Scholar 

  • McMorris, F.R., Wang, C., Zhang, P.: On probe interval graphs. Discrete Applied Mathematics 88, 315–324 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs. In: Rival, I. (ed.) Graphs and Orders, pp. 41–101 D. Reidel Pub. Comp. (1985)

    Google Scholar 

  • Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Mathematics 19, 257–356 (1984)

    Google Scholar 

  • Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification of permutation graphs. Canad. J. Math. 23, 160–175 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, P.: Probe interval graphs and their application to physical mapping of DNA. Manuscript (1994)

    Google Scholar 

  • Zhang, P., Schon, E.A., Fisher, S.G., Cayanis, E., Weiss, J., Kistler, S., Bourne, P.E.: An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. CABIOS 10, 309–317 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chandler, D.B., Chang, MS., Kloks, A.J.J., Liu, J., Peng, SL. (2006). On Probe Permutation Graphs. In: Cai, JY., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2006. Lecture Notes in Computer Science, vol 3959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11750321_47

Download citation

  • DOI: https://doi.org/10.1007/11750321_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34021-8

  • Online ISBN: 978-3-540-34022-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics