Skip to main content

Learning Overcomplete Representations with a Generalized Gaussian Prior

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3959))

  • 1052 Accesses

Abstract

Overcomplete representations have been advocated because they allow a basis to better approximate the underlying statistical density of the data which can lead to representations that better capture the underlying structure in the data. The prior distributions for the coefficients of these models, however, are assumed to be fixed, not adaptive to the data, and hereby inaccurate. Here we describe a method for learning overcomplete representations with a generalized Gaussian prior, which can fit a broader range of statistical distributions by varying the value of the steepness parameter β. Using this distribution in overcomplete representations, empirical results were obtained for the blind source separation of more sources than mixtures, which show that the accuracy of the density estimation is improved.

Supported by the National Natural Science Foundation of China under Grant Nos. 60373029 and the National Research Foundation for the Doctoral Program of Higher Education of China under Grant Nos. 20050004001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewicki, M.S., Sejnowski, T.J.: Learning Overcomplete Representations. Neural Computation 12(2), 337–365 (2000)

    Article  Google Scholar 

  2. Lewicki, M.S., Olshausen, B.A.: A Probabilistic Framework for the Adaptation and Comparison of Image Codes. J. Opt. Soc. Am. A: Optics, Image Science, and Vision 16(7), 1587–1601 (1999)

    Article  Google Scholar 

  3. Lewicki, M.S., Olshausen, B.A.: Inferring Sparse, Overcomplete Image Codes Using an Effiecient Coding Framework. In: Advances in Neural and Information Processing Systems, vol. 10. Morgan Kaufmann, San Mateo (1998)

    Google Scholar 

  4. Olshausen, B.A., Field, D.J.: Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Visual Research 37(33), 11–25 (1997)

    Google Scholar 

  5. Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Application. Neural Networks 13(4-5), 411–430 (2000)

    Article  Google Scholar 

  6. Comon, P.: Independent Component Analysis—A new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  7. : The Generalized Gaussian Mixture Model Using ICA. In: International Workshop on Independent Component Analysis, pp. 239–244. Helsinki (2000)

    Google Scholar 

  8. Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA Mixture Models for Unsupervised Classification of Non-Gaussian Sources and Automatic Context Switching in Blind Signal Separation. IEEE Transactions on Pattern Analysis and Machine intelligence 22(10), 1078–1089 (2000)

    Article  Google Scholar 

  9. Amari, S.: Neural Learning in Structured Parameters Spaces. In: Advances in Neural Information Processing Systems, vol. 10. MIT Press, Cambridge (1997)

    Google Scholar 

  10. Amari, S.: Natural Gradient Works Efficiently in Learning. Neural Computation 10, 251–276 (1998)

    Article  Google Scholar 

  11. Olshausen, B.A.: Principles of Image Representation in Visual Cortex. In: Chalupa, L.M., Werner, J.S. (eds.) The Visual Neurosciences. MIT Press, Cambridge (2002)

    Google Scholar 

  12. Olshausen, B.A., Field, D.J.: Sparse Coding of Sensory Inputs. Current Opinion in Neurobiology 14, 481–487 (2004)

    Article  Google Scholar 

  13. Foldiak, P., Young, M.P.: Sparse Coding in Primate Cortex. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn. The MIT Press, Cambridge (2002)

    Google Scholar 

  14. Olshausen, B.A., Millman, K.J.: Learning Sparse Codes with a Mixture-of-Gaussian Prior. In: Solla, S.A., Leen, T.K., Müller, K.-R. (eds.) Advances in Neural Information Processing Systems, vol. 12. MIT press, Cambridge (2000)

    Google Scholar 

  15. Lee, T.W., Lewicki, M.S., Sejnowski, T.J.: ICA Mixture Models for Unsupervised Classification of non-Gaussian Classes and Automatic Context Switching in Blind Signal Separation. IEEE Transactions on Pattern Recognition Machine Intelligence 22(10), 1078–1089 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, LZ., Luo, SW., Tian, M., Zhao, LW. (2006). Learning Overcomplete Representations with a Generalized Gaussian Prior. In: Cai, JY., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2006. Lecture Notes in Computer Science, vol 3959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11750321_41

Download citation

  • DOI: https://doi.org/10.1007/11750321_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34021-8

  • Online ISBN: 978-3-540-34022-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics