Advertisement

Generalized Counters and Reversal Complexity

  • M. V. Panduranga Rao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)

Abstract

We generalize the definition of a counter and counter reversal complexity and investigate the power of generalized deterministic counter automata in terms of language recognition.

Keywords

Finite Automaton Generalize Counter Language Recognition Counter Machine Pushdown Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical state. Theoretical Computer Science 287(1), 299–311 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. Dassow, J., Mitrana, V.: Finite Automata Over Free Generated Groups. Int. J. Algebra Comput. 10(6), 725–737 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. Duris, P., Galil, Z.: Fooling a Two Way Automaton or one Pushdown Store is better than one Counter for two Way Machines. Theor. Comput. Sci. 21, 39–53 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  4. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theor. Comput. Sci. 7, 311–324 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  5. Gurari, E.T., Ibarra, O.H.: Two-Way Counter Machines and Diophantine Equations. Journal of the ACM 29(3), 863–873 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  6. Ibarra, O.H., Jiang, T., Trn, N.Q., Wang, H.: On the Equivalence of Two-Way Pushdown Automata and Counter Machines Over Bounded Languages. Int. J. Found. Comput. Sci. 4(2), 135–146 (1993)zbMATHCrossRefGoogle Scholar
  7. Ibarra, O.H., Sahni, S.K., Kim, C.E.: Finite Automata with multiplication. Theor. Comput. Sci. 2, 271–294 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  8. Mitrana, V., Stiebe, R.: The Accepting Power of Finite Automata over Groups, New Trends in Formal Languages, (39-48) 1997; also TUCS Technical Report No. 70 (1996)Google Scholar
  9. Mitrana, V., Stiebe, R.: Extended finite automata over groups. Discrete Applied Mathematics 108(3), 287–300 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. Miyano, S.: Two-way deterministic multi-weak-counter machines. Theor. Comput. Sci. 21(1), 27–37 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  11. Miyano, S.: Remarks on two-way automata with weak-counters. Inf. Process. Lett. 18(2), 105–107 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  12. Monien, B.: Deterministic Two-Way One-Head Pushdown Automata are Very Powerful. Inf. Process. Lett. 18(5), 239–242 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  13. Petersen, H.: Two-way One-Counter Automata Accepting Bounded Languages. ACM SIGACT News archive 25(3), 102–105 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • M. V. Panduranga Rao
    • 1
  1. 1.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia

Personalised recommendations