Quadratic Lower Bounds on Matrix Rigidity

  • Satyanarayana V. Lokam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)


The rigidity of a matrix A with respect to the rank bound r is the minimum number of entries of A that must be changed to reduce the rank of A to or below r. It is a major unsolved problem (Valiant, 1977) to construct “explicit” families of n × n matrices of rigidity n 1 + δ for r=εn, where ε and δ are positive constants. In fact, no superlinear lower bounds are known for explicit families of matrices for rank bound r=Ω(n).

In this paper we give the first optimal, Ω(n 2), lower bound on the rigidity of two “somewhat explicit” families of matrices with respect to the rank bound r=cn, where c is an absolute positive constant. The entries of these matrix families are (i) square roots of n 2 distinct primes and (ii) primitive roots of unity of prime orders for the first n 2 primes. Our proofs use an algebraic dimension concept introduced by Shoup and Smolensky (1997) and a generalization of that concept.


Prime Order Primitive Root Hadamard Matrice Hadamard Matrix Matrix Rigidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Babai, L., Frankl, P.: Linear Algebra Methods in Combinatorics. Prelim. version 2. Dept. Computer Science. University of Chicago, Chicago (1992)Google Scholar
  2. 2.
    Baur, W.: Simplified Lower Bounds for Polynomials with Algebraic Coefficients. Journal of Complexity 13, 38–41 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Besicovitch, A.S.: On the linear independence of fractional powers of integers. J. London Math. Soc. 15, 3–6 (1940)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Grundlehren der mathematischen Wissenschaften, vol. 315. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Cheraghchi, M.: On Matrix Rigidity and the Complexity of Linear Forms. Electronic Colloquium on Computational Complexity (ECCC) Report CCC TR05-070 (July 2005), Available at
  6. 6.
    Codenotti, B.: Matrix rigidity. Linear Algebra and its Applications 304(1-3), 181–192 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cai, J., Bach, E.: On testing for zero polynomials by a set of points with bounded precision. Theor. Comput. Sci. 296(1), 15–25 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, Z., Kao, M.: Reducing randomness via Irrational Numbers. In: Proc. 29th Symp. Theory of Computing (STOC), pp. 200–209 (1997)Google Scholar
  9. 9.
    de Wolf, R.: Lower Bounds on Matrix Rigidity via a Quantum Argument. e-Print quant-ph/0505188, Avaialble at
  10. 10.
    Friedman, J.: A note on Matrix Rigidity. Combinatorica 13(2), 235–239 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  12. 12.
    Kashin, B., Razborov, A.A.: Improved Lower Bounds on the Rigidity of Hadamard Matrices (Russian). Matematicheskie Zametki 63(4), 535–540 (1998), English translation is available at Google Scholar
  13. 13.
    Lang, S.: Algebra, 3rd edn. Addison-Wesley Publishing Company, Reading (1993)zbMATHGoogle Scholar
  14. 14.
    Lickteig, T.: Ein elementarer Beweis fr eine geometrische Gradschranke fr die Zahl der Operationen bei der Berechnung von Polynomen. In: Diplomarbeit, Univ. Konstanz (1980)Google Scholar
  15. 15.
    Lokam, S.V.: On the Rigidity of Vandermonde Matrices. Theoretical Computer Science 237(1-2), 477–483 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lewin, D., Vadhan, S.: Checking Polynomial Identities over any Field: Towards a Derandomization? In: Proc. 30th Symp. Theory of Computing (STOC), pp. 438–447 (1998)Google Scholar
  17. 17.
    Pudlák, P., Rödl, V.: Some Combinatorial-Algebraic Problems from Complexity Theory. Discrete Mathematics 136, 253–279 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Shoup, V., Smolensky, R.: Lower Bounds for Polynomial Evaluation and Interpolation. Computational Complexity 6(4), 301–311 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Shokrollahi, M.A., Spielman, D.A., Stemann, V.: A Remark on Matrix Rigidity. Information Processing Letters 64(6), 283–285 (1997)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Valiant, L.G.: Graph-Theoretic Arguments in Low-level Complexity. In: Proc. 6th Math. Foundations of Comp. Sci. Lecture notes in Computer Science, vol. 53, pp. 162–176. Springer, Heidelberg (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Satyanarayana V. Lokam
    • 1
  1. 1.Microsoft ResearchRedmondUSA

Personalised recommendations