Skip to main content

Incorporating Knowledge of Secondary Structures in a L-System-Based Encoding for Protein Folding

  • Conference paper
Artificial Evolution (EA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3871))

Abstract

An encoding scheme for protein folding on lattice models, inspired by parametric L-systems, was proposed. The encoding incorporates problem domain knowledge in the form of predesigned production rules that capture commonly known secondary structures: α-helices and β-sheets. The ability of this encoding to capture protein native conformations was tested using an evolutionary algorithm as the inference procedure for discovering L-systems. Results confirmed the suitability of the proposed representation. It appears that the occurrence of motifs and sub-structures is an important component in protein folding, and these sub-structures may be captured by a grammar-based encoding. This line of research suggests novel and compact encoding schemes for protein folding that may have practical implications in solving meaningful problems in biotechnology such as structure prediction and protein folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, D., Sali, A.: Protein structure prediction and structural genomics. Science 294, 93–96 (2001)

    Article  Google Scholar 

  2. Bentley, P.J.: Exploring component-based representations - the secret of creativity by evolution? In: Parmee, I.C. (ed.) Fourth International Conference on Adaptive Computing in Design and Manufacture (ACDM 2000), pp. 161–172 (2000)

    Google Scholar 

  3. DaCosta, L., Landry, J.-A.: Generating grammatical plant models with genetic algorithms. In: Proceedings of the 7th International Conference on Adaptive and Natural ComputiNG Algorithms (ICANNGA). LNCS, Springer, Heidelberg (2005)

    Google Scholar 

  4. Dandekar, T., Argos, P.: Folding the main chain of small proteins with the genetic algorithm. J. Mol. Biol. 236, 844–861 (1994)

    Article  Google Scholar 

  5. Ken, A.: Dill, Theory for the folding and stability of globular proteins. Biochemistry 24, 1501 (1985)

    Article  Google Scholar 

  6. Escuela, G., Ochoa, G., Krasnogor, N.: Evolving L-systems to capture protein structure native conformations. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J.I., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 74–84. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Fogel, L.J., Angeline, P.J., Bäck, T. (eds.): Shape representations and evolution schemes. MIT Press, Cambridge (1996)

    Google Scholar 

  8. Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings for physical design. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, pp. 600–607. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  9. Kókai, G., Tóth, Z., Ványi, R.: Modelling blood vessels of the eye with parametric L-systems using evolutionary algorithms. In: Horn, W., Shahar, Y., Lindberg, G., Andreassen, S., Wyatt, J.C. (eds.) AIMDM 1999. LNCS (LNAI), vol. 1620, pp. 433–442. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Kranogor, N.: Studies on the theory and design space of memetic algorithms, Ph.D. thesis, University of the West of England, Bristol, UK (2002)

    Google Scholar 

  11. Krasnogor, N., Blackburne, B.P., Burke, E.K., Hirst, J.D.: Multimeme algorithms for protein structure prediction, Lecture Notes in Computer Science. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 769–779. Springer, Heidelberg (2002)

    Google Scholar 

  12. Krasnogor, N., Gustafson, S.: The local searcher as a supplier of building blocks in self-generating. In: GECCO 2003 (2003)

    Google Scholar 

  13. Krasnogor, N., Pelta, D., Martinez-Lopez, P.E., Mocciola, P., de la Canal, E.: Enhanced evolutionary search of foldings using parsed proteins. In: Proceedings of the Argentinian Operational Research Simposium (S.I.O. 1997) (1997)

    Google Scholar 

  14. Krasnogor, N., Smith, J.: MAFRA: A java memetic algorithms framework. In: Freitas, A.A., Hart, W., Krasnogor, N., Smith, J. (eds.) Data Mining with Evolutionary Algorithms, pp. 125–131 (2000)

    Google Scholar 

  15. Lesh, N., Mitzenmacher, M., Whitesides, S.: A complete and effective move set for simplified protein folding. In: Proceedings 7h Annual International Conference on Research in Computational Molecular Biology (RECMB) (2003)

    Google Scholar 

  16. Liang, F., Wong, W.: Evolutionary monte carlo for protein folding simulations. Journal of Chemical Physics 115(7), 3374–3380 (2001)

    Article  Google Scholar 

  17. Ochoa, G., Mädler-Kron, C., Rodriguez, R., Jaffe, K.: Assortative mating in genetic algorithms for dynamic problems. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 605–610. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer, Heidelberg (1990)

    Book  MATH  Google Scholar 

  19. Smith, A.R.: Plants, fractals, and formal languages. Computer Graphics 18(3), 1–10 (1984)

    Article  Google Scholar 

  20. Unger, I., Moult, J.: Genetic algorithms for protein folding simulations. Journal of Molecular Biology 1(231), 75–81 (1993)

    Article  Google Scholar 

  21. Yanikoglu, B., Erman, B.: Minimum energy configurations of the 2-dimensional hp-model of proteins by self-organizing networks. Journal of Computational Biology 9(4), 613–620 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ochoa, G., Escuela, G., Krasnogor, N. (2006). Incorporating Knowledge of Secondary Structures in a L-System-Based Encoding for Protein Folding. In: Talbi, EG., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11740698_22

Download citation

  • DOI: https://doi.org/10.1007/11740698_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33589-4

  • Online ISBN: 978-3-540-33590-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics