Skip to main content

Algorithmic Self-assembly by Accretion and by Carving in MGS

  • Conference paper
Artificial Evolution (EA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3871))

Abstract

We report the use of MGS, a declarative and rule-based language, for the modeling of various self-assembly processes. The approach is illustrated on the fabrication of a fractal pattern, a Sierpinsky triangle, using two approaches: by accretive growth and by carving. The notion of topological collections available in MGSenables the easy and concise modeling of self-assembly processes on various lattice geometries as well as more arbitrary constructions of multi-dimensional objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, Allen, Coore, Hanson, Homsy, Knight, Nagpal, Rauch, Sussman, and Weiss.: Amorphous computing. CACM: Communications of the ACM, 43 (2000)

    Google Scholar 

  2. Carbone, A., Mao, C., Constantinou, P.E., Ding, B., Kopatsch, J., Sherman, W.B., Seeman, N.C.: 3D fractal DNA assembly from coding, geometry and protection. Natural Computing 3(3), 235–252 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eden, M.: In: Yockey, H.P. (ed.) Symposium on Information Theory in Biology, p. 359. Pergamon Press, New York (1958)

    Google Scholar 

  4. Giavitto, J.-L.: Invited talk: Topological collections, transformations and their application to the modeling and the simulation of dynamical systems. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 208–233. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Giavitto, J.-L., Michel, O.: Declarative definition of group indexed data structures and approximation of their domains. In: Proceedings of the 3nd International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP 2001), ACM Press, New York (2001)

    Google Scholar 

  6. Giavitto, J.-L., Michel, O.: Modeling the topological organization of cellular processes. BioSystems 70(2), 149–163 (2003)

    Article  Google Scholar 

  7. Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology. Technical report, IBM Research (October 2001), http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf

  8. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. International Journal of Computer Vision 38(3), 199–218 (2000)

    Article  MATH  Google Scholar 

  9. Manca, V., Martin-Vide, C., Paun, G.: New computing paradigms suggested by dna computing: computing by carving. Biosystems 52(1-3), 47–54 (1999)

    Article  Google Scholar 

  10. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  11. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sierpinski triangles. PLoS Biol, 2(12):e424 (2004), http://www.plosbiology.org

  12. Spicher, A., Michel, O.: Declarative modeling of a neurulation-like process. In: Sixth International Workshop on Information Processing in Cells and Tissues (IPCAT 2005), pp. 304–317 ( August 2005)

    Google Scholar 

  13. Spicher, A., Michel, O., Giavitto, J.-L.: A topological framework for the specification and the simulation of discrete dynamical systems. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Stewart, I.: Four encounters with sierpinski’s gasket. Mathematical Intelligencer 17, 52–64 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  Google Scholar 

  16. Wolfram, S.: A new kind of science. Wolfram Media (2002)

    Google Scholar 

  17. Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7038), 163–164 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spicher, A., Michel, O., Giavitto, JL. (2006). Algorithmic Self-assembly by Accretion and by Carving in MGS . In: Talbi, EG., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11740698_17

Download citation

  • DOI: https://doi.org/10.1007/11740698_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33589-4

  • Online ISBN: 978-3-540-33590-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics