Interactive Multimedia System for Distance Learning of Higher Education

  • Yan Liu
  • Wong Hang Chit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3942)


The rapid growth and wide application of distance education have lead to the significant need for multimedia techniques and systems. It is difficult, however, to implement the interactions among the students or/and between the students and the teacher because of the huge volume of multimedia data. This paper presents a framework of the interactive multimedia system for distance learning of higher education with several novel characteristics. First, a hierarchical structure for multimedia system has been proposed to support personalized learning and teaching styles. Second, several feature selection algorithms have been used to support fast video classification and retrieval. Third, a novel asynchronous model has been provided to address the challenges issues of interaction in distance education. We analyze the performance of the system based on a real application of the self-study multimedia web page for the final exam of one university course.


Feature Selection Distance Education Final Exam Distance Learn Feature Selection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lew, M.S., Sebe, N., Eakins, J.P.: Challenges of Image and Video Retrieval. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 1–6. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Sundaram, H., Chang, S.F.: Computable scenes and structures in films. IEEE Trans. Multimedia 4, 482–491 (2002)CrossRefGoogle Scholar
  3. 3.
    Fan, J., Luo, H., Elmagarmid, A.K.: Concept-oriented Indexing of Video Databases: Toward Semantic Sensitive Retrieval and Browsing. IEEE Trans. Image Processing 13, 974–992 (2004)CrossRefGoogle Scholar
  4. 4.
    Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D.M., Jordan, M.I.: Matching words and pictures. J. Mach. Learn. Res. 3, 1107–1135 (2003)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bakker, E., Lew, M.: Semantic Video Retrieval Using Audio Analysis. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 260–267. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Sato, T., Kanade, T., Hughes, E., Smith, M., Satoh, S.: Video OCR: Indexing Digital News Libraries by Recognition of Superimposed and Caption. ACM Multimedia Systems Special Issue on Video Libraries (February 1998)Google Scholar
  7. 7.
    Kim, K., Choi, J., Kim, N., Kim, P.: Extracting semantic information from basketball video based on audio-visual features. In: Lew, M., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 278–288. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Wei, G., Sethi, I.K.: Omni-face detection for video/image content description. In: ACM Multimedia Workshops, pp. 185–189 (2000)Google Scholar
  9. 9.
    Naphade, M.R., Kristjansson, T., Fery, B., Huang, T.S.: Probabilistic Multimedia Objects Multijects: A novel Approach to Indexing and Retrieval in Multimedia Systems. In: Proceedings of IEEE International Conference on Image Processing, vol. 3, pp. 536–540 (2001)Google Scholar
  10. 10.
    Zhang, H., Low, C.Y., Smoliar, S.W.: Video Parsing and Browsing Using Compressed Data. Multimedia Tools and Applications 1, 89–111 (1995)CrossRefGoogle Scholar
  11. 11.
    Lee, J., Dickinson, B.W.: Multiresolution video indexing for subband coded video databases. In: SPIE Proceedings: Image and Video Processing, vol. 2185, pp. 162–173 (1994)Google Scholar
  12. 12.
    Liu, Y., Kender, J.R.: Video frame categorization using Sort-Merge feature selection. In: Proceedings IEEE Workshop on Motion and Video Computing, pp. 72–77 (2002)Google Scholar
  13. 13.
    Liu, Y., Kender, J.R.: Feature selection for video data. In: Proceedings of the Third SIAM International Conference on Data Mining, San Francisco, CA, USA, May 1-3 (2003)Google Scholar
  14. 14.
    Liu, Y., Kender, J.R.: Fast scene segmentation using multi-level feature selection algorithm. In: IEEE International Conference on Multimedia & Expo (2003)Google Scholar
  15. 15.
    Liu, Y., Kender, J.R.: Video retrieval under sparse training data. In: CIVR, pp. 406–413 (2003)Google Scholar
  16. 16.
    Liu, Y., Kender, J.R.: Video Feature Selection Using Fast-converging Sort-Merge Tree. In: Submitted to IEEE International Conference on Multimedia & Expo (2004)Google Scholar
  17. 17.
    Liu, Y., Kender, J.R.: Fast video segment retrieval by Sort-Merge feature selection, boundary refinement, and lazy evaluation. Computer Vision and Image Understanding 92(2-3), 147–175 (2003)CrossRefGoogle Scholar
  18. 18.
    Iskander, M.F.: Computer-Based Electromagnetic Education. IEEE Transactions on Microwave Theory and Techniques 41(6b) (1993)Google Scholar
  19. 19.
    Schnepf, J., Konstan, J.A., Du, D.H.-C.: Doing FLIPS: Flexible Interactive Presentation Synchronization. IEEE Journal on Selected Areas in Communications 14(1) (January 1996)Google Scholar
  20. 20.
    Tobagi, F.A.: Distance Learning with Digital Video. IEEE Transactions on Multimedia (1995)Google Scholar
  21. 21.
    Yin, P.-Y., Bhanu, B., Chang, K.-C., Dong, A.: Integrating Relevance Feedback Techniques for Image Retrieval Using Reinforcement Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1536–1551 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yan Liu
    • 1
  • Wong Hang Chit
    • 1
  1. 1.Department of ComputingThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong

Personalised recommendations