Yet Another Forward Secure Signature from Bilinear Pairings

  • Duc-Liem Vo
  • Kwangjo Kim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3935)


In this work, we have proposed yet another forward secure signature based on bilinear pairings. Our forward secure signature requires the general security parameters only independent to the total number of time periods. The scheme can perform key evolving for unlimited time periods while maintaining sizes of keys and signature fixed. In addition, the signing algorithm is very efficient with the simple verification algorithm. We also provide a formal definition along with a detailed security proof of our signature scheme under the assumption of Computational Diffie-Hellman problem.


Forward security pairings key exposure key evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdalla, M., Reyzin, L.: A New Forward-Secure Digital Signature Scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Abdalla, M., Miner, S., Namprempre, C.: Forward-Secure Threshold Signature Schemes. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 441–456. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Anderson, R.: Two Remarks on Public-Key Cryptology From Invited Lecture. In: Fourth ACM conference on Computer and Communications Security (April 1997),
  4. 4.
    Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–369. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Miner, S.K.: A Forward-Secure Digital Signature Scheme. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  7. 7.
    Boneh, D., Franklin, M.: ID-based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Duc, D.N., Cheon, J.H., Kim, K.: A Forward-Secure Blind Signature Scheme Based on the Strong RSA Assumption. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 11–21. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Franklin, M., Katz, J., Miyaji, A., Yung, M.: Intrusion Resilient Public-Key Encryption. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 19–32. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Galbraith, S., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Haber, S., Stornetta, W.: How to Time-Stamp a Digital Document. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 437–455. Springer, Heidelberg (1991)Google Scholar
  15. 15.
    Hu, F., Wu, C., Irwin, J.D.: A New Forward Secure Signature Scheme using Bilinear Maps,
  16. 16.
    Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Joux, A., Nguyen, K.: Separating Decision Diffie-Hellman from Diffie-Hellman in Cryptographic Groups. Cryptology ePrint Archive (2001/2003)Google Scholar
  18. 18.
    Kozlov, A., Reyzin, L.: Forward-Secure Signatures with Fast Key Update. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 241–256. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Krawczyk, H.: Simple Forward-Secure Signatures from Any Signature Scheme. In: Proc. of Seventh ACM Conference on Computer and Communications Security, pp. 108–115 (November 2000)Google Scholar
  20. 20.
    Maklin, T., Micciancio, D., Miner, S.: Efficient Generic Forward-Secure Signatures with an Unbounded Number of Time Periods. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Song, D.X.: Practical Forward Secure Group Signature Schemes. In: Proc. of the 8th ACM Conference on Computer and Communications Security – CCS 2001, pp. 225–234. ACM, New York (2001)Google Scholar
  22. 22.
    Tzeng, W., Tzeng, Z.: Robust Forward-Secure Digital Signature with Proactive Security. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 264–276. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Zhang, F., Kim, K.: ID-Based Blind Signature and Ring Signature from Pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Duc-Liem Vo
    • 1
  • Kwangjo Kim
    • 1
  1. 1.International Research center for Information Security (IRIS)Information and Communications University (ICU)DaejeonKorea

Personalised recommendations