Advertisement

Characterisations of Extended Resiliency and Extended Immunity of S-Boxes

  • Josef Pieprzyk
  • Xian-Mo Zhang
  • Jovan Dj. Golić
Conference paper
  • 972 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3935)

Abstract

New criteria of extended resiliency and extended immunity of vectorial Boolean functions, such as S-boxes for stream or block ciphers, were recently introduced. They are related to a divide-and-conquer approach to algebraic attacks by conditional or unconditional equations. Classical resiliency turns out to be a special case of extended resiliency and as such requires more conditions to be satisfied. In particular, the algebraic degrees of classically resilient S-boxes are restricted to lower values. In this paper, extended immunity and extended resiliency of S-boxes are studied and many characterisations and properties of such S-boxes are established. The new criteria are shown to be necessary and sufficient for resistance against the divide-and-conquer algebraic attacks by conditional or unconditional equations.

Keywords

Extended Resiliency Extended Immunity Divide-and- Conquer Algebraic Attacks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. SIAM J. Computing 17, 210–229 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bierbrauer, J., Gopalakrishnan, K., Stinson, D.R.: Bounds on resilient functions and orthogonal arrays. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 247–256. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Camion, P., Carlet, C., Charpin, P., Sendrier, N.: On correlation-immune functions. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 87–100. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Carlet, C.: Improving the algebraic immunity of resilient and nonlinear functions and constructing bent functions (2004), http://eprint.iacr.org/2004/276/
  5. 5.
    Carlet, C., Prouff, E.: Vectorial functions and covering sequences. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Fq7 2003. LNCS, vol. 2948, pp. 215–248. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Cheon, J.H.: Nonlinear vector resilient functions. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 458–469. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Cheon, J.H., Lee, D.H.: Resistance of S-boxes against algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 83–94. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Chor, B., Goldreich, O., Håstad, J., Friedman, J., Rudich, S., Smolensky, R.: The bit extraction problem or t-resilient functions. In: Proc. 26th IEEE Symp. on Foundations of Computer Science, pp. 396–407 (1985)Google Scholar
  9. 9.
    Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Dalai, D., Gupta, K., Maitra, S.: Results on algebraic immunity for cryptographically significant Boolean functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Dalai, D., Gupta, K., Maitra, S.: Results on algebraic immunity for cryptographically significant Boolean functions: Construction and analysis in term of algebraic immunity. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 98–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Friedman, J.: On the bit extraction problem. In: Proc. 33rd IEEE Symp. on Foundations of Computer Science, pp. 314–319 (1992)Google Scholar
  15. 15.
    Golić, J.D.: Vectorial Boolean functions and induced algebraic equations (2004), http://eprint.iacr.org/2004/225/
  16. 16.
    Gupta, K.C., Sarkar, P.: Improved construction of nonlinear resilient s-boxes. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 466–483. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Hall Jr., M.: Combinatorial Theory. Ginn-Blaisdell, Waltham (1967)zbMATHGoogle Scholar
  18. 18.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    O’Nan, M.: Linear Algebra. Harcourt Brace Jovanovich, New York (1976)zbMATHGoogle Scholar
  20. 20.
    Pasalic, E., Maitra, S.: Further constructions of resilient Boolean functions with very high nonlinearity. IEEE Transactions on Information Theory 48(7), 1825–1834 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sarkar, P., Maitra, S.: Nonlinearity bounds and constructions of resilient Boolean functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 515–532. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Siegenthaler, T.: Correlation-immunity of nonlinear combining functions for cryptographic applications. IEEE Transactions on Information Theory 30(5), 776–779 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Stinson, D.R.: Resilient functions and large sets of orthogonal arrays. Congressus Numerantium 92, 105–110 (1993)MathSciNetGoogle Scholar
  24. 24.
    Zhang, X.M., Zheng, Y.: Cryptographically resilient functions. IEEE Transactions on Information Theory 43(5), 1740–1747 (1997)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Josef Pieprzyk
    • 1
  • Xian-Mo Zhang
    • 1
  • Jovan Dj. Golić
    • 2
  1. 1.Centre for Advanced Computing – Algorithms and Cryptography, Department of ComputingMacquarie UniversitySydneyAustralia
  2. 2.Telecom Italia Lab, Telecom ItaliaTurinItaly

Personalised recommendations