A Framework for Kleene Algebra with an Embedded Structure

  • Hitoshi Furusawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3929)


This paper proposes a framework for Kleene algebras with embedded structures that enables different kinds of Kleene algebras such as a Kleene algebra with tests and a Kleene algebra with relations to be handled uniformly. This framework guarantees the existence of free algebra if the embedded structures satisfy certain conditions.


Boolean Algebra Full Subcategory Regular Language Relation Algebra Free Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barr, M., Wells, C.: Category Theory for Computing Science, 3rd edn. Les Publications CRM (1999)Google Scholar
  2. 2.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)zbMATHGoogle Scholar
  3. 3.
    Desharnais, J.: Kleene Algebras with Relations. In: Berghammer, R., Möller, B. (eds.) RelMiCS 2003. LNCS, vol. 3051, pp. 8–20. Springer, Heidelberg (2004) (invited talk)CrossRefGoogle Scholar
  4. 4.
    Desharnais, J., Möller, B., Struth, G.: Kleene Algebra with Domain, Technical Report 2003-07, Institut für Informatik, Universität Augsburg (2003)Google Scholar
  5. 5.
    Furusawa, H.: A Free Construction of Kleene Algebra with Tests. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 129–141. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Furusawa, H., Kinoshita, Y.: Essentially Algebraic Structure for Kleene Algebra with Tests and Its Application to Semantics of While Programs. IPSJ Transactions on Programming 44 (SIG 4 (PRO 17)), 47–53 (2003)Google Scholar
  7. 7.
    Kinoshita, Y., Furusawa, H.: Essentially Algebraic Structure for Kleene Algebra with Tests. Computer Software 20(2), 47–53 (2003) (in Japanese) Google Scholar
  8. 8.
    Kozen, D.: On Kleene Algebras and Closed Semirings. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 26–47. Springer, Heidelberg (1990)Google Scholar
  9. 9.
    Kozen, D.: A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Information and Computation 110, 366–390 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kozen, D.: Kleene Algebra with Tests. ACM Transactions on Programming Languages and Systems 19(3), 427–443 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kozen, D., Smith, F.: Kleene Algebra with Tests: Completeness and Decidability. In: van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Lane, S.M.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  13. 13.
    Mulvey, C., Pelletier, J.: A Quantisation of the Calculus of Relations. In: Proc. of Category Theory 1991. CMS Conference Proceedings, vol. 13, pp. 345–360. Amer. Math. Soc. (1992)Google Scholar
  14. 14.
    Takeuti, I.: Kleene Category as a Model of Calculation. In: Proc. 2nd Symposium on Science and Technology for System Verification, Programming Science Group Technical Report, Research Center for Verification and Semantics, National Institute of Advanced Industrial Science and Technology (AIST), PS-2005-017, pp. 151–160 (October 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hitoshi Furusawa
    • 1
  1. 1.Research Center for Verification and SemanticsAISTHyogoJapan

Personalised recommendations