Relational Semantics Through Duality

  • Ewa Orłowska
  • Ingrid Rewitzky
  • Ivo Düntsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3929)


In this paper we show how the classical duality results extended to a Duality via Truth contribute to development of a relational semantics for various modal-like logics. In particular, we present a Duality via Truth for some classes of information algebras and frames. We also show that the full categorical formulation of classical duality extends to a full Duality via Truth.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BrR01]
    Brink, C., Rewitzky, I.: A Paradigm for Program Semantics: Power Sructures and Duality. CSLI Publications, Stanford (2001)Google Scholar
  2. [DaP90]
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  3. [DeO02]
    Demri, S.P., Orłowska, E.S.: Incomplete Information: Structure, Inference, Complexity. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  4. [DOR03]
    Düntsch, I., Orłowska, E., Radzikowska, A.: Lattice-based relation algebras and their representability. In: Swart, H., Orlowska, E., Roubens, M., Schmidt, G. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 231–255. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [DORV05]
    Düntsch, I., Orłowska, E., Radzikowska, A., Vakarelov, D.: Relational representation theorems for some lattice-based structures. Journal of Relational Methods in Computer Science 1 (2005)Google Scholar
  6. [DuO01]
    Düntsch, I., Orłowska, E.: Beyond modalities: sufficiency and mixed algebras. In: Orlowska, E., Szalas, A. (eds.) Relational Methods for Computer Science Applications, pp. 263–285. Physica Verlag, Heidelberg (2001)CrossRefGoogle Scholar
  7. [JoT51]
    Jónsson, B., Tarski, A.: Boolean algebras with operators I. American Journal of Mathematics 73, 891–939 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [OrR05a]
    Orłowska, E., Radzikowska, A.: Relational representability for algebras of substructural logics. In: Proceedings of the 8th International Seminar RelMiCS, St.Catharines, Canada, February 22-26, 2005, pp. 189–195 (2005)Google Scholar
  9. [OrR05b]
    Orłowska, E., Rewitzky, I.: Duality via Truth: Semantic frameworks for lattice-based logics. Logic Journal of the IGPL, 28 pages (to appear, 2005)Google Scholar
  10. [OrV03]
    Orłowska, E., Vakarelov, D.: Lattice-based modal algebras and modal logics. In: Westerstahl, D., Valdés-Villanueva, L.M., Hajek, P. (eds.) Proceedings of the 12th International Congress of Logic, Methodology and Philosophy of Science, Oviedo, Spain, pp. 22–23. Elsevier, Amsterdam (to appear, 2003); Abstract in the Volume of AbstractsGoogle Scholar
  11. [Rew03]
    Rewitzky, I.: Binary multirelations. In: de Swart, H., et al. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 256–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. [vaB84]
    van Benthem, J.: Correspondence Theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. II, pp. 167–247. Kluwer Academic Publishers, Amsterdam (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ewa Orłowska
    • 1
  • Ingrid Rewitzky
    • 2
  • Ivo Düntsch
    • 3
  1. 1.National Institute of TelecommunicationsWarsawPoland
  2. 2.University of StellenboschSouth Africa
  3. 3.Brock UniversityCanada

Personalised recommendations