Skip to main content

Relational Representability for Algebras of Substructural Logics

  • Conference paper
Relational Methods in Computer Science (RelMiCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3929))

Included in the following conference series:

Abstract

Representation theorems for the algebras of substructural logics FL, FLe, FLc, and FLw are presented. The construction of the representation algebras is an extension of the constructions from Urquhart ([25]) and Allwein and Dunn ([1]). Namely, the representation algebras are built from the frames, which are appropriately associated to substructural logics. As a by–product we obtain a Kripke–style frame semantics for these logics.

The work was carried on in the framework of COST Action 274/TARSKI on Theory and Applications of Relational Structures as Knowledge Instruments (www.tarski.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwein, G., Dunn, J.M.: Kripke models for linear logic. J. Symb. Logic 58, 514–545 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bimbo, K.: Substructural logics, combinatory logic, and λ–calculus, Ph.D thesis, Indiana University, Bloomington, USA (1999)

    Google Scholar 

  3. Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. of Algebra Comput. 13(4), 437–461 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  5. Dilworth, R.P., Ward, N.: Residuated lattices. Transactions of the American Mathematical Society 45, 335–354 (1939)

    Article  MathSciNet  MATH  Google Scholar 

  6. Düntsch, I., Orłowska, E., Radzikowska, A.M.: Lattice–based relation algebras and their representability. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 231–255. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Düntsch, I., Orłowska, E., Radzikowska, A.M.: Lattice–based relation algebras II (preprint, 2003)

    Google Scholar 

  8. Düntsch, I., Orłowska, E., Radzikowska, A.M., Vakarelov, D.: Relational representation theorems for some lattice–based structures. Journal of Relation Methods in Computer Science JoRMiCS 1, 132–160 (2004); special volume

    Google Scholar 

  9. Esteva, F., Godo, L.: Monoidal t–norm based logic: towards a logic for left–continuous t–norms. Fuzzy Sets and Systems 124, 271–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flondor, P., Georgescu, G., Iorgulecu, A.: Psedo–t–norms and pseudo–BL algebras. Soft Computing 5(5), 355–371 (2001)

    Article  MATH  Google Scholar 

  11. Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  12. Hart, J.B., Rafter, L., Tsinakis, C.: The structure of commutative residuated lattices. Internat. J. Algebra Comput. 12(4), 509–524 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hartonas, C., Dunn, J.M.: Stone duality for lattices. Algebra Universalis 37, 391–401 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Höhle, U.: Commutative, residuated l-monoids. In: Höhle, U., Klement, U.P. (eds.) Non–Classical Logics and their Applications to Fuzzy Subsets, pp. 53–106. Kluwer, Dordrecht (1996)

    Google Scholar 

  15. Jipsen, P.: A Gentzen system and decidability for residuated lattices (preprint, 2001)

    Google Scholar 

  16. Jipsen, P., Tsinaksis, C.: A Survey of Residuated Lattices. In: Martinez, J. (ed.) Ordered Algebraic Structures, pp. 19–56. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  17. Ono, H.: Semantics for substructural logics. In: Dosen, K., Schroeder–Heister, P. (eds.) Substructural Logics, pp. 259–291. Oxford University Press, Oxford (1993)

    Google Scholar 

  18. Ono, H.: Substructural logics and residuated lattices – an introduction. In: Hendricks, V., Malinowski, J. (eds.) Trends in Logic: 50 Years of Studia Logica, Trends in Logic, vol. 20, pp. 177–212. Kluwer, Dordrecht (2003)

    Google Scholar 

  19. Orłowska, E., Radzikowska, A.M.: Information relations and operators based on double residuated lattices. In: de Swart, H.C.M. (ed.) Proceedings of the 6th Seminar on Relational Methods in Computer Science RelMiCS 2001, pp. 185–199 (2001)

    Google Scholar 

  20. Orłowska, E., Radzikowska, A.M.: Double residuated lattices and their applications. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 171–189. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Orłowska, E., Vakarelov, D.: Lattice–based modal algebras and modal logics. In: Hajek, P., Valdes, L., Westerstahl, D. (eds.) Proceedings of the 12th International Congress of Logic, Methodology and Philosophy of Science, Oviedo, August 2003, pp. 22–23. Elsevier, Amsterdam (in print, 2003); Abstract in the Volume of Abstracts

    Google Scholar 

  22. Orłowska, E., Rewitzky, I.: Duality via Truth: Semantic frameworks for lattice–based logics. Logic Journal of the IGPL 13, 467–490 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Orłowska, E., Rewitzky, I., Düntsch, I.: Relational semantics through duality. LNCS. Springer, Heidelberg (to appear, 2005)

    MATH  Google Scholar 

  24. Turunen, E.: Mathematics Behind Fuzzy Logic. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  25. Urquhart, A.: A topological representation theorem for lattices. Algebra Universalis 8, 45–58 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orłowska, E., Radzikowska, A.M. (2006). Relational Representability for Algebras of Substructural Logics. In: MacCaull, W., Winter, M., Düntsch, I. (eds) Relational Methods in Computer Science. RelMiCS 2005. Lecture Notes in Computer Science, vol 3929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11734673_17

Download citation

  • DOI: https://doi.org/10.1007/11734673_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33339-5

  • Online ISBN: 978-3-540-33340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics