Relational Representability for Algebras of Substructural Logics

  • Ewa Orłowska
  • Anna Maria Radzikowska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3929)


Representation theorems for the algebras of substructural logics FL, FLe, FLc, and FLw are presented. The construction of the representation algebras is an extension of the constructions from Urquhart ([25]) and Allwein and Dunn ([1]). Namely, the representation algebras are built from the frames, which are appropriately associated to substructural logics. As a by–product we obtain a Kripke–style frame semantics for these logics.


Binary Relation Distributive Lattice Relational Semantic Representation Theorem Residuated Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allwein, G., Dunn, J.M.: Kripke models for linear logic. J. Symb. Logic 58, 514–545 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bimbo, K.: Substructural logics, combinatory logic, and λ–calculus, Ph.D thesis, Indiana University, Bloomington, USA (1999)Google Scholar
  3. 3.
    Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. of Algebra Comput. 13(4), 437–461 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dilworth, R.P., Ward, N.: Residuated lattices. Transactions of the American Mathematical Society 45, 335–354 (1939)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Düntsch, I., Orłowska, E., Radzikowska, A.M.: Lattice–based relation algebras and their representability. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929, pp. 231–255. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Düntsch, I., Orłowska, E., Radzikowska, A.M.: Lattice–based relation algebras II (preprint, 2003)Google Scholar
  8. 8.
    Düntsch, I., Orłowska, E., Radzikowska, A.M., Vakarelov, D.: Relational representation theorems for some lattice–based structures. Journal of Relation Methods in Computer Science JoRMiCS 1, 132–160 (2004); special volumeGoogle Scholar
  9. 9.
    Esteva, F., Godo, L.: Monoidal t–norm based logic: towards a logic for left–continuous t–norms. Fuzzy Sets and Systems 124, 271–288 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Flondor, P., Georgescu, G., Iorgulecu, A.: Psedo–t–norms and pseudo–BL algebras. Soft Computing 5(5), 355–371 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Hart, J.B., Rafter, L., Tsinakis, C.: The structure of commutative residuated lattices. Internat. J. Algebra Comput. 12(4), 509–524 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hartonas, C., Dunn, J.M.: Stone duality for lattices. Algebra Universalis 37, 391–401 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Höhle, U.: Commutative, residuated l-monoids. In: Höhle, U., Klement, U.P. (eds.) Non–Classical Logics and their Applications to Fuzzy Subsets, pp. 53–106. Kluwer, Dordrecht (1996)Google Scholar
  15. 15.
    Jipsen, P.: A Gentzen system and decidability for residuated lattices (preprint, 2001)Google Scholar
  16. 16.
    Jipsen, P., Tsinaksis, C.: A Survey of Residuated Lattices. In: Martinez, J. (ed.) Ordered Algebraic Structures, pp. 19–56. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  17. 17.
    Ono, H.: Semantics for substructural logics. In: Dosen, K., Schroeder–Heister, P. (eds.) Substructural Logics, pp. 259–291. Oxford University Press, Oxford (1993)Google Scholar
  18. 18.
    Ono, H.: Substructural logics and residuated lattices – an introduction. In: Hendricks, V., Malinowski, J. (eds.) Trends in Logic: 50 Years of Studia Logica, Trends in Logic, vol. 20, pp. 177–212. Kluwer, Dordrecht (2003)Google Scholar
  19. 19.
    Orłowska, E., Radzikowska, A.M.: Information relations and operators based on double residuated lattices. In: de Swart, H.C.M. (ed.) Proceedings of the 6th Seminar on Relational Methods in Computer Science RelMiCS 2001, pp. 185–199 (2001)Google Scholar
  20. 20.
    Orłowska, E., Radzikowska, A.M.: Double residuated lattices and their applications. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 171–189. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Orłowska, E., Vakarelov, D.: Lattice–based modal algebras and modal logics. In: Hajek, P., Valdes, L., Westerstahl, D. (eds.) Proceedings of the 12th International Congress of Logic, Methodology and Philosophy of Science, Oviedo, August 2003, pp. 22–23. Elsevier, Amsterdam (in print, 2003); Abstract in the Volume of AbstractsGoogle Scholar
  22. 22.
    Orłowska, E., Rewitzky, I.: Duality via Truth: Semantic frameworks for lattice–based logics. Logic Journal of the IGPL 13, 467–490 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Orłowska, E., Rewitzky, I., Düntsch, I.: Relational semantics through duality. LNCS. Springer, Heidelberg (to appear, 2005)zbMATHGoogle Scholar
  24. 24.
    Turunen, E.: Mathematics Behind Fuzzy Logic. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  25. 25.
    Urquhart, A.: A topological representation theorem for lattices. Algebra Universalis 8, 45–58 (1978)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ewa Orłowska
    • 1
  • Anna Maria Radzikowska
    • 2
  1. 1.National Institute of TelecommunicationsWarsawPoland
  2. 2.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations