Forward Secure Communication in Wireless Sensor Networks

  • Sjouke Mauw
  • Ivo van Vessem
  • Bert Bos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3934)


We propose a set of security provisions for node to base station communication in wireless sensor networks. It supports standard security requirements, viz. authentication of the origin of data and confidentiality of data. Additionally we use key evolution to achieve forward security which is of particular importance in the face of node capture attacks. As a bonus we obtain implicit weak freshness without message expansion. We take the typical resource constraints of wireless sensor networks into account. The security provisions can be superimposed on several communication models, such as the epidemic communication model.


Sensor Network Sensor Node Wireless Sensor Network Hash Function Block Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basagni, S., Herrin, K., Bruschi, D., Rosti, E.: Secure pebblenets. In: MobiHoc 2001: Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing, pp. 156–163. ACM Press, New York (2001)Google Scholar
  2. 2.
    Bellare, M., Yee, B.: Forward-security in private-key cryptography. Cryptology ePrint Archive, Report 2001/035 (2001)Google Scholar
  3. 3.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: CCS 2002: Proceedings of the 9th ACM conference on Computer and communications security, pp. 41–47. ACM Press, New York (2002)Google Scholar
  4. 4.
    Gavidia, D., Voulgaris, S., van Steen, M.: Epidemic-style monitoring in large-scale sensor networks. Technical Report IR-CS-012.05, Vrije Universiteit Amsterdam (March 2005),
  5. 5.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. In: ASPLOS-IX: Proceedings of the ninth international conference on Architectural support for programming languages and operating systems, pp. 93–104. ACM Press, New York (2000), doi:10.1145/378993.379006CrossRefGoogle Scholar
  6. 6.
    Hu, F., Sharma, N.: Security considerations in ad hoc sensor networks. Ad Hoc Networks 3(1), 69–89 (2005)CrossRefGoogle Scholar
  7. 7.
    Jamshaid, K., Schwiebert, L.: Seken (secure and efficient key exchange for sensor networks). In: Performance, Computing, and Communications, 2004 IEEE International Conference on, pp. 415–422 (2004)Google Scholar
  8. 8.
    Jones, K., Wadaa, A., Olariu, S., Wilson, L., Eltoweissy, M.: Towards a new paradigm for securing wireless sensor networks. In: NSPW 2003: Proceedings of the 2003 workshop on New security paradigms, pp. 115–121. ACM Press, New York (2003)Google Scholar
  9. 9.
    Karlof, C., Sastry, N., Wagner, D.: Tinysec: a link layer security architecture for wireless sensor networks. In: SenSys 2004: Proceedings of the 2nd international conference on Embedded networked sensor systems, pp. 162–175. ACM Press, New York (2004)Google Scholar
  10. 10.
    Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Authentication, February 1997. RFC (2104)Google Scholar
  11. 11.
    Law, Y.W., Dulman, S., Etalle, S., Havinga, P.: Assessing security-critical energy-efficient sensor networks. Technical Report TR-CTIT-02-18, University of Twente, The Netherlands (July 2002),
  12. 12.
    Liu, D., Ning, P., Li, R.: Establishing pairwise keys in distributed sensor networks. ACM Trans. Inf. Syst. Secur. 8(1), 41–77 (2005)CrossRefGoogle Scholar
  13. 13.
    Menezes, A.J., Vanstone, S.A., Van Oorschot, P.C.: Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton (1996)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic approach to “privacy-friendly” tags. In: RFID Privacy Workshop, MIT, Cambridge (2003)Google Scholar
  15. 15.
    Perrig, A., Stankovic, J., Wagner, D.: Security in wireless sensor networks. Commun. ACM 47(6), 53–57 (2004)CrossRefGoogle Scholar
  16. 16.
    Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: security protocols for sensor networks. Wirel. Netw. 8(5), 521–534 (2002)CrossRefzbMATHGoogle Scholar
  17. 17.
    Pirzada, A.A., McDonald, C.: Kerberos assisted authentication in mobile ad-hoc networks. In: CRPIT 2004: Proceedings of the 27th conference on Australasian computer science, Darlinghurst, Australia, pp. 41–46. Australian Computer Society, Inc. (2004)Google Scholar
  18. 18.
    Potlapally, N.R., Ravi, S., Raghunathan, A., Jha, N.K.: Analyzing the energy consumption of security protocols. In: Nachiketh, R. (ed.) ISLPED 2003: Proceedings of the 2003 international symposium on Low power electronics and design, pp. 30–35. ACM Press, New York (2003)Google Scholar
  19. 19.
    Venugopalan, R., Ganesan, P., Peddabachagari, P., Dean, A., Mueller, F., Sichitiu, M.: Encryption overhead in embedded systems and sensor network nodes: modeling and analysis. In: CASES 2003: Proceedings of the 2003 international conference on Compilers, architecture and synthesis for embedded systems, pp. 188–197. ACM Press, New York (2003)Google Scholar
  20. 20.
    Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. Technical report, Shandong University, Shandong, China (June 2005)Google Scholar
  21. 21.
    Wang, Y.: Robust key establishment in sensor networks. SIGMOD Rec. 33(1), 14–19 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sjouke Mauw
    • 1
  • Ivo van Vessem
    • 1
  • Bert Bos
    • 2
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Chess Information Technology BVBestThe Netherlands

Personalised recommendations