Skip to main content

Data Mining in Inductive Databases

  • Conference paper
Knowledge Discovery in Inductive Databases (KDID 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3933))

Included in the following conference series:

Abstract

Ever since the seminal paper by Imielinski and Mannila [11], inductive databases have been a constant theme in the data mining literature. Operationally, such an inductive database is a database in which models and patterns are first class citizens.

In the extensive literature on inductive databases there is at least one consequence of this operational definition that is conspicuously missing. That is the question: if we have models and patterns in our inductive database, how does this help to discover other models and patterns? This question is the topic of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD conference, pp. 207–216 (1993)

    Google Scholar 

  2. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence databases. In: Lomet, D. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  3. Asperti, A., Longo, G.: Categories, Types, and Structures. MIT Press, Cambridge (1991)

    MATH  Google Scholar 

  4. Bathoorn, R., Siebes, A.: Discovering (almost) phylogentic trees from developmental sequences data. In Knowledge Discovery in Databases. In: PKDD 2004. Lecture Notes in AI, vol. 3202 (2004)

    Google Scholar 

  5. Bonchi, F., Lucchese, C.: On closed constrained frequent pattern mining. In: Rastogi, R., Morik, K., Bramer, M., Wu, X. (eds.) Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 35–42 (2004)

    Google Scholar 

  6. Boulicaut, J.-F., Bykowski, A.: Frequent closures as a concise representation for binary data mining. In: Knowledge Discovery and Data Mining, Current Issues and New Applications, 4th Pacific-Asia Conference, PADKK 2000, pp. 62–73 (2000)

    Google Scholar 

  7. Castelo, R., Feelders, A., Siebes, A.: Mambo: Discovering association rules based on conditional independencies. In: Hoffmann, F., Adams, N., Fisher, D., Guimarães, G., Hand, D.J. (eds.) IDA 2001. LNCS, vol. 2189, pp. 289–298. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Hand, D.J.: Pattern detection and discovery. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 1–12. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Hollmén, J., Seppanen, J.K., Mannila, H.: Mixture models and frequent sets: Combining global and local methods for 0-1 data. In: Proc. SIAM Conference on Data Mining (SDM) 2003 (2003)

    Google Scholar 

  10. Maynard-Reid II, P., Chajewska, U.: Aggregating learned probabilistic beliefs. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 354–361. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  11. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Communications of the ACM 39(11), 58–64 (1996)

    Article  Google Scholar 

  12. Jaynes, E.T.: Probability Theory: The Logic of Science

    Google Scholar 

  13. Kargupta, H., Chan, P. (eds.): Advances in Distributed and Parallel Knowledge Discovery. MIT Press, Cambridge (2000)

    Google Scholar 

  14. Knobbe, A.J., de Haas, M., Siebes, A.: Propositionalisation and aggregates. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 277–288. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Kohane, I.S., Kho, A.T., Butte, A.J.: Microarrays for an Integrative Genomics. In: Computational Molecular Biology. MIT Press, Cambridge (2003)

    Google Scholar 

  16. Krogel, S., Rawles, F., Zelezny, P., Flach, N.: Comparative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 194–217. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Chichester (2004)

    Book  MATH  Google Scholar 

  18. Last, M., Kandel, A., Bunke, H. (eds.): Data Mining in Time Series Databases. World Scientific, Singapore (2004)

    MATH  Google Scholar 

  19. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proc. of the ACM KDD conference, pp. 80–86 (1998)

    Google Scholar 

  20. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovery of frequent episodes in event sequences.  1, 259–289 (1997)

    Google Scholar 

  21. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions. Wiley Series in Probability and Statistics. John Wiley & Sons, Chichester (1997)

    MATH  Google Scholar 

  22. Morik, K., Boulicaut, J.-F., Siebes, A. (eds.): Local Pattern Detection. LNCS (LNAI), vol. 3539. Springer, Heidelberg (2005)

    Google Scholar 

  23. Naqvi, S., Tsur, S.: A Logical Language for Data and Knowledge Bases. Computer Science Press (1989)

    Google Scholar 

  24. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, Englewood Cliffs (2003)

    Google Scholar 

  25. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proc. ACM SIGMOD conference (1998)

    Google Scholar 

  26. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: Proceedings of 1998 ACM SIGMOD International Conference Management of Data, pp. 13–24 (1998)

    Google Scholar 

  27. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  28. Pavlov, D., Mannila, H., Smyth, P.: Beyond independence: Probabilistic models for query approximation on binary transaction data. Technical Report UCI-ICS TR-01-09, UC Irvine (2001)

    Google Scholar 

  29. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1997)

    MATH  Google Scholar 

  30. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2), 69–77 (2000)

    Article  MathSciNet  Google Scholar 

  31. De Raedt, L., Kersting, K.: Probabilistic logic learning. SIGKDD Explorations 5(1), 31–48 (2003)

    Article  Google Scholar 

  32. Rue, H., Held, L.: Gaussian Markov Random Fields. Monographs on Statistics and Applied Probablity, vol. 104. Chapman and Hall, Boca Raton (2005)

    MATH  Google Scholar 

  33. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and its Applications, vol. 24. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  34. Shaw-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  35. Siebes, A., Vreeken, J., van Leeuwen, M.: Leeuwen Item sets that compress. In: Proceedings of the SIAM conference on Data Mining (SDM) (2006)

    Google Scholar 

  36. Struzik, Z., Siebes, A.: The haar wavelet transform in the time series similarity paradigm. In: Zytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 12–22. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  37. Valentini, G., Masulli, F.: Ensembles of learning machines. In: Marinaro, M., Tagliaferri, R. (eds.) WIRN 2002. LNCS, vol. 2486, pp. 3–22. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  38. Weiss, S.M., Indurkhya, N., Zhang, T., Damerau, F.J.: Text Mining. Springer, Heidelberg (2005)

    Book  MATH  Google Scholar 

  39. Zaiane, O.R., Simoff, S., Djeraba, C.: MDM/KDD 2002 and KDMCD 2002. LNCS (LNAI), vol. 2797. Springer, Heidelberg (2003)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siebes, A. (2006). Data Mining in Inductive Databases. In: Bonchi, F., Boulicaut, JF. (eds) Knowledge Discovery in Inductive Databases. KDID 2005. Lecture Notes in Computer Science, vol 3933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11733492_1

Download citation

  • DOI: https://doi.org/10.1007/11733492_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33292-3

  • Online ISBN: 978-3-540-33293-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics