Skip to main content

Optimal Selection of Microarray Analysis Methods Using a Conceptual Clustering Algorithm

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3907))

Included in the following conference series:

Abstract

The rapid development of methods that select over/under expressed genes from microarray experiments have not yet matched the need for tools that identify informational profiles that differentiate between experimental conditions such as time, treatment and phenotype. Uncertainty arises when methods devoted to identify significantly expressed genes are evaluated: do all microarray analysis methods yield similar results from the same input dataset? do different microarray datasets require distinct analysis methods?. We performed a detailed evaluation of several microarray analysis methods, finding that none of these methods alone identifies all observable differential profiles, nor subsumes the results obtained by the other methods. Consequently, we propose a procedure that, given certain user-defined preferences, generates an optimal suite of statistical methods. These solutions are optimal in the sense that they constitute partial ordered subsets of all possible method-associations bounded by both, the most specific and the most sensitive available solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  2. Brown, P., Botstein, D.: Exploring the new world of the genome with DNA microarrays. Nature Genet. 21(suppl.), 33–37 (1999)

    Article  Google Scholar 

  3. Pan, W., Lin, J., Le, C.: A mixture model approach to detecting differentially expressed genes with microarray data. Funct. Integr. Genomics 3(3), 117–124 (2001)

    Google Scholar 

  4. Li, C., Wong, W.H.: DNA-Chip Analyzer (dChip). In: Parmigiani, G., Garrett, E.S., Irizarry, R., Zeger, S.L. (eds.) The analysis of gene expression data: methods and software. Springer, Heidelberg (2003)

    Google Scholar 

  5. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA. 98, 5116–5121 (2001)

    Article  MATH  Google Scholar 

  6. Park, T., Yi, S.G., Lee, S., Lee, S.Y., Yoo, D.H., Ahn, J.I., Lee, Y.S.: Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics 19(6), 694–703 (2003)

    Article  Google Scholar 

  7. Der, G., Everitt, B.S.: Handbook of Statistical Analyses using SAS. Chapman and Hall/CRC (2001)

    Google Scholar 

  8. Cheeseman, P., Oldford, R.W.: Selecting models from data: artificial intelligence and statistics IV. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  9. Zwir, I., Shin, D., Kato, A., Nishino, K., Latifi, K., Solomon, F., Hare, J.M., Huang, H., Groisman, E.A.: Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc. Natl. Acad. Sci. 102, 2862–2867 (2005a)

    Article  Google Scholar 

  10. Zwir, I., Huang, H., Groisman, E.A.: Analysis of Differentially-Regulated Genes within a Regulatory Network by GPS Genome Navigation, Bioinformatics (2005b) (in press)

    Google Scholar 

  11. Chankong, V., Haimes, Y.Y.: Multiobjective decision making theory and methodology. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  12. Deb, K.: Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, Chichester, New York (2001)

    MATH  Google Scholar 

  13. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the ACM SIGMOD. International Conference on Management of Data, Washington, D.C, pp. 207–216 (1993)

    Google Scholar 

  14. Kooperberg, C., Sipione, S., LeBlanc, M., Strand, A.D., Cattaneo, E., Olson, J.M.: Evaluating test statistics to select interesting genes in microarray experiments. Hum. Mol. Genet. 11(19), 2223–2232 (2002)

    Article  Google Scholar 

  15. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  16. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, Chichester (1973)

    MATH  Google Scholar 

  17. Cordón, O., del Jesus, M.J., Herrera, F.: A Proposal on Reasoning Methods in Fuzzy Rule-Based Classification Systems. International Journal of Approximate Reasoning 20, 21–45 (1999)

    Google Scholar 

  18. Calvano, S.E., Xiao, W., Richards, D.R., Feliciano, R.M., Baker, H.V., Cho, R.J., Chen, R.O., Brownstein, B.H., Cobb, J.P., Tschoeke, S.K., Miller-Graziano, C., Moldawer, L.L., Mindrinos, M.N., Davis, R.W., Tompkins, R.G., Lowry, S.F.: The Inflammation and Host Response to Injury Large Scale Collaborative Research Program. In: A Network- Based Analysis of Systemic Inflammation in Humans. Nature (2005) (in press)

    Google Scholar 

  19. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture, Nat. Genet. 22, 281–285 (1999)

    Google Scholar 

  20. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet. 25, 25–29 (2000)

    Google Scholar 

  21. Benitez-Bellon, E., Moreno-Hagelsieb, G., Collado-Vides, J.: Evaluation of thresholds for the detection of binding sites for regulatory proteins in Escherichia coli K12 DNA. Genome Biol. 3(3) RESEARCH0013 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rubio-Escudero, C., Romero-Záliz, R., Cordón, O., Harari, O., del Val, C., Zwir, I. (2006). Optimal Selection of Microarray Analysis Methods Using a Conceptual Clustering Algorithm. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_16

Download citation

  • DOI: https://doi.org/10.1007/11732242_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33237-4

  • Online ISBN: 978-3-540-33238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics