Skip to main content

Multi-Objective Evolutionary Algorithm for Discovering Peptide Binding Motifs

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3907))

Included in the following conference series:

Abstract

Multi-Objective Evolutionary Algorithms (MOEA) use Genetic Algorithms (GA) to find a set of potential solutions, which are reached by compromising trade-offs between the multiple objectives. This paper presents a novel approach using MOEA to search for a motif which can unravel rules governing peptide binding to medically important receptors with applications to drugs and vaccines target discovery. However, the degeneracy of motifs due to the varying physicochemical properties at the binding sites across large number of active peptides poses a challenge for the detection of motifs of specific molecules such as MHC Class II molecule I-Ag7 of the non-obese diabetic (NOD) mouse. Several motifs have been experimentally derived for I-Ag7 molecule, but they differ from each other significantly. We have formulated the problem of finding a consensus motif for I-Ag7by using MOEA as an outcome that satisfies two objectives: extract prior information by minimizing the distance between the experimentally derived motifs and the resulting matrix by MOEA; minimize the overall number of false positives and negatives resulting by using the putative MOEA-derived motif. The MOEA results in a Pareto optimal set of motifs from which the best motif is chosen by the Area under the Receiver Operator Characteristics (AROC) performance on an independent test dataset. We compared the MOEA-derived motif with the experimentally derived motifs and motifs derived by computational techniques such as MEME, RANKPEP, and Gibbs Motif Sampler. The overall predictive performance of the MOEA derived motif is comparable or better than the experimentally derived motifs and is better than the computationally derived motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deb, K., et al.: A Fast and Elitist Multiobjective Genetic Algorithm. IEEE Trans. on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  2. Zitzler, E., et al.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength of Pareto Approach. IEEE Trans. on Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

  3. Knowles, J.D., et al.: Approximating the Nondominant front using the Pareto Archived evolution stratergy. Evolutionary Computation 8, 49–172 (2000)

    Article  Google Scholar 

  4. Fonseca, C.M., et al.: Genetic Algorithms for Multiobjective Optimization: Formulation, discussion and generalization. In: Forrest, S. (ed.) Proc. of the fifth Intl. conference on Genetic Algorithms, pp. 416–423. Morgan Kauffman, San Mateo (1993)

    Google Scholar 

  5. Lee, S., et al.: Comparison of Multi-Objective Genetic Algorithms in Optimizing Q-Law- Thrust Orbit Transfers. In: Lee, S., et al. (eds.) GECCO (2005)

    Google Scholar 

  6. Amor, S., et al.: Encephalitogenic epitopes of myelin basic protein, proteolipid proteing, and myelin oligodendrocyte glycoprotein for experimental allergic en-cephalomyelitis induction in Biozzi AB/H(H-2Ag 7) mice share an amino acid motif. J. Immunology 156, 3000–3008 (1996)

    Google Scholar 

  7. Reich, E.P., et al.: Self peptides isolated from MHC glycoproteins of non-obese diabetic mice. J. Immunology 152, 2279–2288 (1994)

    Google Scholar 

  8. Rammensee, H., et al.: SYFPEITHI:database for MHC ligands and peptide motifs. Immunogenetics 50, 213–219 (1999)

    Article  Google Scholar 

  9. Reizis, B., et al.: Molecular characterization of the diabetes mouse MHC class-II protein, IAg 7. Int. Immunology 9, 43–51 (1997)

    Article  Google Scholar 

  10. Harrison, L.C., et al.: A peptide binding motif for I- Ag 7, the class II major jistocompatibility complex (MHC) molecule of NOD and Biozzi AB/H mice. J. Exp. Med. 185, 1013–1021 (1997)

    Article  Google Scholar 

  11. Latek, R.R., et al.: Structural basis of peptide binding and presentation by the type I diabetes- associated MHC class II molecule of NOD mice. Immunity 12, 699–710 (2000)

    Article  Google Scholar 

  12. Gregori, S.: The motif for peptide binding to the insulin-dependent diabetes mellitusassociated class II MHC molecule I-Ag 7 validated by phage display library. Int. Immunology 12(4), 493–503 (2000)

    Article  Google Scholar 

  13. Corper, A.L., et al.: A structural framework for deciphering the link between I-Ag 7 and autoimmune diabetes. Science 288, 505–511 (2000)

    Article  Google Scholar 

  14. Yu, B., et al.: Binding of conserved islet peptides by human and murine MHC class II molecules associated with susceptibility to type I diabetes. J. Immunology 30(9), 2497–2506

    Google Scholar 

  15. Suri, A., et al.: In APCs, the Autologous Peptides Selected by the Diabetogenic I-Ag 7 Molecule Are Unique and Determined by the Amino Acid Changes in the P9 Pocket. J. Immunol. 168(3), 1235–1243 (2002)

    MathSciNet  Google Scholar 

  16. Stratman, T., et al.: The I-Ag 7 MHC class II molecule linked to murine diabetes in a promiscuous peptide binder. J. Immunology 165, 3214–3225 (2000)

    Google Scholar 

  17. Brusic, V.: An unpublished dataset

    Google Scholar 

  18. Brusic, V., Rudy, G., Harrison, L.C.: MHCPEP, a database of MHC-binding peptides: update 1997. Nucleic Acids Res 26, 368–371 (1998)

    Article  Google Scholar 

  19. Bailey, T.L., Elkan, C.: The value of prior knowledge in discovering motifs with MEME. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 3, pp. 21–29 (1995)

    Google Scholar 

  20. Péer, I., et al.: Proteomic Signatures:Amino Acid and Oligopeptide Compositions Differentiate Among Phyla. Proteins 54, 20–40 (2004)

    Article  Google Scholar 

  21. http://meme.scdc.edu/meme/website/meme.html

  22. Neuwald, A.F., et al.: Gibbs motif sampling: detection of bacterial outer membrane protein repeats. Protein Science 4, 1618–1632 (1995)

    Article  Google Scholar 

  23. Reche, P.A., et al.: Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56, 405–419 (2004)

    Article  Google Scholar 

  24. Coello, C.A.: An Updated Survey of Evolutionary Multiobjective Optimization Techniques: State of the Art and Future Trends. In: Congress on Evolutionary Computation, pp. 3–13. IEEE Service Center, Washington (1999)

    Google Scholar 

  25. Carraso-Marin, E., Kanagawa, O., Unanue, E.R.: The lack of consensus for I-Ag7-peptide binding motifs: Is there a requirement for anchor amino acid side chain. Proc. Natl. Acad. Sci. 96, 8621–8626 (1999)

    Article  Google Scholar 

  26. Rajapakse, M., Wyse, L., Schmidt, B., Brusic, V.: Deriving Matrix of Peptide-MHC Interactions in Diabetic Mouse by Genetic Algorithm. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL 2005. LNCS, vol. 3578, pp. 440–447. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rajapakse, M., Schmidt, B., Brusic, V. (2006). Multi-Objective Evolutionary Algorithm for Discovering Peptide Binding Motifs. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_14

Download citation

  • DOI: https://doi.org/10.1007/11732242_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33237-4

  • Online ISBN: 978-3-540-33238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics