Skip to main content

Challenges for Artificial Immune Systems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3931))

Abstract

In this position paper, we argue that the field of Artificial Immune Systems (AIS) has reached an impass. For many years, immune inspired algorithms, whilst having some degree of success, have been limited by the lack of theorectical advances, the adoption of a limited immune inspired approach and the limited application of AIS to hard problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stepney, S., Clark, J., Tyrrell, A., Johnson, C., Timmis, J., Partridge, D., Adamatsky, A., Smith, R.: Journeys in non-classical computation: A grand challenge for computing research. Challenge Report 7, National E-Science Centre, University of Edinburgh (2003)

    Google Scholar 

  2. de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  3. Burnet, F.: The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge (1959)

    Book  Google Scholar 

  4. Jerne, N.K.: Towards a network theory of the immune system. Annals Immunol 125C, 373–389 (1974)

    Google Scholar 

  5. Aberola-Ila, J., Hogquist, K.A., Swan, K.A., Bevan, M.J., Perlmutter, R.M.: Positive and negative selection invoke distinct signaling pathways. J. Exp. Med 184, 9–18 (1996)

    Article  Google Scholar 

  6. Stepney, S., Smith, R., Timmis, J., Tyrrell, A.: Towards a Conceptual Framework for Artificial Immune Systems. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 53–64. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Janeway, C., Medzhitov, R.: Innate immune recognition. Ann. Rev. Immunol. 20, 197–216 (2002)

    Article  Google Scholar 

  8. Janeway Jr., C.A., Paul, T.: Immunobiology: The Immune System in Health and Disease, 3rd edn. Garland Publishing, New York (1997)

    Google Scholar 

  9. Berek, C., Ziegner, M.: The maturation of the immune response. Immunology Today 14, 200–402 (1993)

    Article  Google Scholar 

  10. de Castro, L., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems 6, 239–251 (2002)

    Article  Google Scholar 

  11. Cutello, V., Nicosia, G., Parvone, M.: Exploring the capability of immune algorithms: A characterisation of hypermutation operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Garrett, S.: Parameter-free, Adaptive Clonal Selection. In: Congress on Evolutionary Computing, CEC. IEEE, Los Alamitos (2004)

    Google Scholar 

  13. Watkins, A.: An Artificial Immune Recognition System. Mississippi State University. MSc Thesis (2001)

    Google Scholar 

  14. Watkins, A., Timmis, J.: Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifi. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 427–438. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Watkins, A., Xintong, B., Phadke, A.: Parallelizing an Immune-Inspired Algorithm for Efficient Pattern Recognition. In: Intelligent Engineering Systems through Artificial Neural Networks: Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems and Artificial Life, pp. 224–230. ASME Press (2003)

    Google Scholar 

  16. Kim, J., Bentley, P.J.: Immune memory in the dynamic clonal selection algorithm. In: Timmis, J., Bentley, P.J. (eds.) Proceedings of the 1st International Conference on Artificial Immune Systems ICARIS, University of Kent at Canterbury, University of Kent at Canterbury Printing Unit, pp. 59–67 (2002)

    Google Scholar 

  17. Secker, A., Freitas, A., Timmis, J.: AISEC: An Artificial Immune System for Email Classification. In: Proceedings of the Congress on Evolutionary Computation, pp. 131–139. IEEE, Los Alamitos (2003)

    Google Scholar 

  18. de Castro, L.N., Von Zuben, F.J.: aiNet: An Artificial Immune Network for Data Analysis. In: Idea Group Publishing, USA, pp. 231–259 (2001)

    Google Scholar 

  19. de Castro, L., Timmis, J.: Hierarchy and convergence of immune networks: Basic ideas and preliminary results. In: Timmis, J., Bentley, P.J. (eds.) Proceedings of the 1st International Conference on Artificial Immune Systems ICARIS, University of Kent at Canterbury, University of Kent at Canterbury Printing Unit, pp. 231–240 (2002)

    Google Scholar 

  20. Timmis, J., Neal, M.J.: A Resource Limited Artificial Immune System for Data Analysis. In: Research and Development in Intelligent Systems XVII, Proceedings of ES 2000, Cambridge, UK, pp. 19–32 (2000)

    Google Scholar 

  21. Knight, T., Timmis, J.: AINE: An immunological approach to data mining. In: Proc. of the IEEE International Conference on Data Mining, pp. 297–304 (2001)

    Google Scholar 

  22. Neal, M.: An Artificial Immune System for Continuous Analysis of Time-Varying Data. In: Timmis, J., Bentley, P. (eds.) Proceedings of the First International Conference on Artificial Immune Systems ICARIS, Canterbury, UK, UKC, pp. 76–85 (2002)

    Google Scholar 

  23. Bersini, H.: Immune network and adaptive control. In: Proc. First European Conference on Artificial Life, pp. 217–226. MIT Press, Cambridge (1991)

    Google Scholar 

  24. Ishida, Y.: Active diagnosis by self-organisation: An approach by the immune network metaphor. In: Proceedings of the International Joint Conference on Artificial Intelligence, Nagoya, Japan, pp. 1084–1089. IEEE, Los Alamitos (1997)

    Google Scholar 

  25. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. In: Proc. of the IEEE Symposium on Research in Security and Privacy, pp. 202–212 (1994)

    Google Scholar 

  26. Forrest, S., Hofmeyr, S., Somayaji, A.: Computer Immunology. Communications of the ACM 40, 88–96 (1997)

    Article  Google Scholar 

  27. Esponda, F., Forrest, S., Helman, P.: A formal framework for positive and negative detection schemes. IEEE Transactions on Systems, Man and Cybernetics Part B 34, 357–373 (2004)

    Article  Google Scholar 

  28. Stibor, T., Bayarou, K., Eckert, C.: An investigation of R-chunk detector generation on higher alphabets. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 26–30. Springer, Heidelberg (2004)

    Google Scholar 

  29. Timmis, J., de Lemos, R., Ayara, M., Duncan, R.: Towards immune inspired fault tolerance in embedded systems. In: Wang, L., Rajapakse, J., Fukushima, K., Lee, S., Yao, X. (eds.) Proceedings of 9th International Conference on Neural Information Processing, pp. 1459–1463. IEEE, Los Alamitos (2002)

    Google Scholar 

  30. Kim, J., Bentley, P.J.: A model of gene library evolution in the dynamic clonal selection algorithm. In: Timmis, J., Bentley, P.J. (eds.) Proceedings of the 1st International Conference on Artificial Immune Systems ICARIS, University of Kent at Canterbury, University of Kent at Canterbury Printing Unit, pp. 182–189 (2002)

    Google Scholar 

  31. Stibor, T., Mohr, P., Timmis, J., Eckert, C.: Is negative selection algorithm suitable for anomaly detection? In: Proceedings of GECCO 2005. LNCS. Springer, Heidelberg (2005)

    Google Scholar 

  32. Hart, E., Ross, P.: Studies on the implications of shape-space models for idiotypic networks. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 413–426. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  33. Bersini, H.: Reinforcement and recruitment learning for adaptive process control. In: Proc. Int. Fuzzy Association Conference (IFAC/IFIP/IMACS) on Artificial Intelligence in Real Time Control, pp. 331–337 (1992)

    Google Scholar 

  34. Bersini, H., Varela, F.: The Immune Learning Mechansims: Recruitment, Reinforcement and their Applications. Chapman Hall, Boca Raton (1994)

    Google Scholar 

  35. Hightower, R.R., Forrest, S.A., Perelson, A.S.: The evolution of emergent organization in immune system gene libraries. In: Eshelman, L.J. (ed.) Proc. 6th Int. Conf. Genetic Algorithms, pp. 344–350. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  36. Freitas, A.A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems: A Problem Oriented Perspective. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 229–241. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  37. Segal, L., Cohen, I. (eds.): Design Principles for the Immune System and Other Distributed Systems. Oxford University Press, Oxford (2001)

    Google Scholar 

  38. Villalobos-Arias, M., Coello, C.A.C., Hernandez-Lerma, O.: Convergence analysis of a multiobjective artificial immune system algorithm. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 226–235. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  39. Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Oxford University Press, Oxford (1982)

    MATH  Google Scholar 

  40. Hone, A., Kelsey, J.: Optima, extrema, and artificial immune systems. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 89–98. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  41. Farmer, J.D., Packard, N.H., Perelson, A.S.: The Immune System, Adaptation, and Machine Learning. Physica D, 187–204 (1986)

    Google Scholar 

  42. Brzezniak, Z., Zastawniak, T.: Basic Stochastic Processes. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  43. Besendovsky, H.O., del Ray, A.: Immune-Neuro-Endocrine Interactions: Facts and Hypotheses. Nature 249, 356–358 (1996)

    Article  Google Scholar 

  44. Neal, M., Timmis, J.: Once more unto the breach... towards artificial homeostasis? In: Recent Advances in Biologically Inspired Computing, IGP (2004)

    Google Scholar 

  45. Simth, W.R.: Qualitative mathematical models of endocrine systems. Am. Journal of Physiology 245, 473–477 (1983)

    Google Scholar 

  46. Liu, B., Deng, G.: An improved mathematical model of hormone secretion in the hypothalamo-pituitary-gonadal axis in man. J. Theor. Biol. 150, 51–58 (1991)

    Article  Google Scholar 

  47. Sieburg, H.B., Clay, O.K.: The cellular device machine development system for modeling biology on the computer. Complex Systems 5, 575–601 (1991)

    MATH  Google Scholar 

  48. Peleg, M., Yeh, I., Altman, R.B.: Modeling biological processes using workflow and petri net models. Bioinformatics 18, 825–837 (2002)

    Article  Google Scholar 

  49. Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional petri net. Silico Biology 3, 389–404 (2003)

    Google Scholar 

  50. Kuttler, C., Niehren, J., Blossey, R.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. In: Proc. Concurrent Models in Molecular Biology, Bioconcur., vol. 04 (2004)

    Google Scholar 

  51. Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: Proc Concurrent Models in Molecular Biology (BIOCONCUR 2004). ENTCS (2004)

    Google Scholar 

  52. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Theoretical Computer Science (Special Issue on Computational Methods in Systems Biology) 325, 141–167 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Timmis, J. (2006). Challenges for Artificial Immune Systems. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_42

Download citation

  • DOI: https://doi.org/10.1007/11731177_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33183-4

  • Online ISBN: 978-3-540-33184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics