Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3895))

Abstract

The notion of state is fundamental to the design and analysis of virtually all computational systems. The Myhill-Nerode Theorem of Finite Automata theory—and the concepts underlying the Theorem—is a source of sophisticated fundamental insights about a large class of state-based systems, both finite-state and infinite-state systems. The Theorem’s elegant algebraic characterization of the notion of state often allows one to analyze the behaviors and resource requirements of such systems. This paper reviews the Theorem and illustrates its application to a variety of formal computational systems and problems, ranging from the design of circuits, to the analysis of data structures, to the study of state-based formalisms for machine-learning systems. It is hoped that this survey will awaken many to, and remind others of, the importance of the Theorem and its fundamental insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartmanis, J., Stearns, R.E.: Algebraic Structure Theory of Sequential Machines. Prentice Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  2. Hennie, F.C.: On-line Turing machine computations. IEEE Trans. Electronic Computers EC-15, 35–44 (1966)

    Article  Google Scholar 

  3. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 2nd edn. Addison-Wesley, Reading (2001)

    MATH  Google Scholar 

  4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 1st edn. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  5. Jaffe, J.: A necessary and sufficient pumping lemma for regular languages. SIGACT News, 48–49 (1978)

    Google Scholar 

  6. Karp, R.M.: Some bounds on the storage requirements of sequential machines and Turing machines. J. ACM 14, 478–489 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  7. Knuth, D.E.: The Art of Computer Programming: Fundamental Algorithms, 2nd edn. Addison-Wesley, Reading (1973)

    Google Scholar 

  8. Lewis, H.R., Papadimitriou, C.H.: Elements of the Theory of Computation. Prentice-Hall, Englewood Cliffs (1981)

    MATH  Google Scholar 

  9. Linz, P.: An Introduction to Formal Languages and Automata, 3rd edn. Jones and Bartlett Publ. Sudbury (2001)

    Google Scholar 

  10. Moore, E.F.: Gendanken experiments on sequential machines. In: Shannon, C.E., McCarthy, J. (eds.) [Ann. Math. Studies 34], Automata Studies, pp. 129–153. Princeton Univ. Press, Princeton (1956)

    Google Scholar 

  11. Moret, B.M.: The Theory of Computation. Addison-Wesley, Reading (1997)

    Google Scholar 

  12. Myhill, J.:: Finite automata and the representation of events. WADD TR- 57-624, Wright Patterson AFB, Ohio, pp. 112–137 (1957)

    Google Scholar 

  13. Nerode, A.: Linear automaton transformations. In: Proc. AMS, vol. 9, pp. 541–544 (1958)

    Google Scholar 

  14. Rabin, M.O.: Probabilistic automata. Inform. Control 6, 230–245 (1963)

    Article  Google Scholar 

  15. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)

    Article  MathSciNet  Google Scholar 

  16. Rosenberg, A.L.: Data graphs and addressing schemes. J. CSS 5, 193–238 (1971)

    MATH  Google Scholar 

  17. Schönhage, A.: Storage modification machines. SIAM J. Computing 9, 490–508 (1980)

    Article  MATH  Google Scholar 

  18. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Co., Boston (1997)

    MATH  Google Scholar 

  19. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 42(2), 230–265 (1936); Correction ibid., vol. 43, 544–546

    Google Scholar 

  20. Wikipedia: The Free Encyclopedia (2005), http://en.wikipedia.org/wiki/Pumping_lemma

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenberg, A.L. (2006). State. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds) Theoretical Computer Science. Lecture Notes in Computer Science, vol 3895. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11685654_16

Download citation

  • DOI: https://doi.org/10.1007/11685654_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32880-3

  • Online ISBN: 978-3-540-32881-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics