Advertisement

Temporal Logic Constraints in the Biochemical Abstract Machine BIOCHAM

  • François Fages
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3901)

Abstract

Recent progress in Biology and data-production technologies push research toward a new interdisciplinary field, named Systems Biology, where the challenge is to break the complexity walls for reasoning about large biomolecular interaction systems. Pioneered by Regev, Silverman and Shapiro, the application of process calculi to the description of biological processes has been a source of inspiration for many researchers coming from the programming language community.

In this presentation, we give an overview of the Biochemical Abstract Machine (BIOCHAM), in which biochemical systems are modeled using a simple language of reaction rules, and the biological properties of the system, known from experiments, are formalized in temporal logic. In this setting, the biological validation of a model can be done by model-checking, both qualitatively and quantitatively. Moreover, the temporal properties can be turned into specifications for learning modifications or refinements of the model, when incorporating new biological knowledge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4, 64–73 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Chabrier, N., Fages, F., Soliman, S.: BIOCHAM’s user manual. INRIA (2003-2005)Google Scholar
  3. 3.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  4. 4.
    Chabrier, N., Fages, F.: Symbolic Model Checking of Biochemical Networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical interaction networks. Theoretical Computer Science 325, 25–44 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)Google Scholar
  7. 7.
    Cimatti, A., Clarke, E., Enrico Giunchiglia, F.G., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Gibson, M.A., Bruck, J.: A probabilistic model of a prokaryotic gene and its regulation. In: Bolouri, H., Bower, J. (eds.) Computational Methods in Molecular Biology: From Genotype to Phenotype, MIT press, Cambridge (2000)Google Scholar
  9. 9.
    Gillespie, D.T.: General method for numerically simulating stochastic time evolution of coupled chemical-reactions. Journal of Computational Physics 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: A machine learning approach to biochemical reaction rules discovery. In: III, F.J.D. (ed.) Proceedings of Foundations of Systems Biology and Engineering FOSBE 2005, Santa Barbara, pp. 375–379 (2005)Google Scholar
  11. 11.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Gentils, L., Soliman, S.: Machine learning bio-molecular interactions from temporal logic properties. In: Plotkin, G. (ed.) CMSB 2005: Proceedings of the third Workshop on Computational Methods in Systems Biology (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • François Fages
    • 1
  1. 1.INRIA RocquencourtFrance

Personalised recommendations