Skip to main content

Dynamic Control of Captured Motions to Verify New Constraints

  • Conference paper
  • 1138 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3881))

Abstract

Simulating realistic human-like figures is still a challenging task when dynamics is involved. For example, making a virtual human jump to a given position requires to control the forces involved in take-off in order to reach a given velocity vector at the beginning of the aerial phase. Several problems are addressed in this paper in order to modify a captured motion while accounting from dynamics. The method exploits a point mass approximation of the body for the Inverse Dynamics stage during the contact phase and later to optimize new trajectories. First, accurate body segment masses are required to have access to external forces thanks to inverse dynamics. Second, those forces have to be adapted to make the resulting center of mass trajectory verify new constraints (such as reaching a given point at a given time). This paper also proposes a new formalism to encode force depending on time in contact phases (called impulse). Whereas classical biomechanical analyzes focus only on the peak of forces and on the contact phase duration, our formalism provides new data to characterize the shape of an impulse.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witkin, A., Kass, M.: Spacetime constraints. In: Proceedings of ACM SIGGRAPH, Atlanta, Georgia, pp. 159–168. Addison Wesley, Reading (1988)

    Google Scholar 

  2. Cohen, M.: Interactive spacetime control for animation. In: Proceedings of ACM SIGGRAPH 1992, Chicago, Illinois, vol. 26, pp. 293–302 (1992)

    Google Scholar 

  3. Liu, Z., Gorther, S., Cohen, M.: Hierarchical spacetime control. In: Proceedings of ACM SIGGRAPH 1994, Orlando, Floride, pp. 35–42 (1994)

    Google Scholar 

  4. Gleicher, M.: Retargetting motion to new characters. In: Proc. of ACM SIGGRAPH, pp. 33–42 (1998)

    Google Scholar 

  5. Lee, J., Shin, S.: A hierarchical approach to interactive motion editing for humanlike figures. In: Proceedings of ACM SIGGRAPH 1999, pp. 39–48 (1999)

    Google Scholar 

  6. Ménardais, S., Multon, F., Kulpa, R., Arnaldi, B.: Motion blending for real-time animation while accounting for the environment. In: Computer Graphics International (2004)

    Google Scholar 

  7. Shin, H., Kovar, L., Gleicher, M.: Physical touch-up of human motions. In: Proceedings of Pacific Graphics, Alberta, Canada (2003)

    Google Scholar 

  8. Boulic, R., Fua, P., Herda, L., Silaghi, M., Monzani, J., Nedel, L., Thalmann, D.: An anatomic human body for motion capture. In: Proc. of EMMSEC 1998, Bordeaux, France (1998)

    Google Scholar 

  9. LeCallennec, B., Boulic, R.: Interactive motion deformation with prioritized constraints. In: Boulic, R., Pai, D.K. (eds.) Proceedings of ACM/Eurographics SCA, Grenoble, France, pp. 163–171 (2004)

    Google Scholar 

  10. Baerlocher, P., Boulic, R.: An inverse kinematic architecture enforcing on arbitrary number of strict priority levels. The Visual Computer 20, 402–417 (2004)

    Article  Google Scholar 

  11. Tak, S., Song, O., Ko, H.: Spacetime sweeping: a interactive dynamic constraints solver. In: Proceedings of IEEE Computer Animation, pp. 261–270 (2002)

    Google Scholar 

  12. Hodgins, J.: Animating human athletics. In: Proceeding of ACM SIGGRAPH 1995, Los Angeles, California (1995)

    Google Scholar 

  13. Fang, A., Pollard, N.: Efficient synthesis of physically valid human motion. In: Proceedings of ACM SIGGRAPH, vol. 22, pp. 417–426 (2003)

    Google Scholar 

  14. Hodgins, J., Pollard, N.: Adapting simulated behaviors for new characters. In: Proceedings of ACM SIGGRAPH, Los Angeles, California. Addison Wesley, Reading (1997)

    Google Scholar 

  15. Pollard, N., Behmaram-Mosavat, F.: Force-based motion editing for locomotion tasks. In: Proceedings of IEEE international conference on Robotics and Automation, San Francisco, CA (2000)

    Google Scholar 

  16. Sherwood, D.: Impulse characteristics in rapid movement: implications for impulsevariability models. Journal of motor behavior 18, 188–214 (1986)

    Article  Google Scholar 

  17. Herda, L., Fua, P., Plänkers, R., Boulic, R., Thalmann, D.: Using skeleton-based tracking to increase the reliability of optical motion capture. Human Movement Science Journal (2001)

    Google Scholar 

  18. DeLeva, P.: Adjustements to zatsiorsky-seluyanov’s segment inertia parameters. Journal of Biomechanics 29, 1223–1230 (1996)

    Article  Google Scholar 

  19. Pearsall, D., Costigan, P.: The effect of segment parameter error on gait analysis results. Gait and Posture 9, 173–183 (1999)

    Article  Google Scholar 

  20. Vaughan, C., Andrews, J., Hay, J.: Selection of body segment parameters by optimization methods. Journal of biomechanical engineering 104, 38–44 (1982)

    Article  Google Scholar 

  21. Liegeois, A.: Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans. Systems, Man, and Cybernetics 7, 868–871 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durocher, C., Multon, F., Kulpa, R. (2006). Dynamic Control of Captured Motions to Verify New Constraints. In: Gibet, S., Courty, N., Kamp, JF. (eds) Gesture in Human-Computer Interaction and Simulation. GW 2005. Lecture Notes in Computer Science(), vol 3881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11678816_23

Download citation

  • DOI: https://doi.org/10.1007/11678816_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32624-3

  • Online ISBN: 978-3-540-32625-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics