Toward Joint Segmentation and Classification of Dialog Acts in Multiparty Meetings

  • Matthias Zimmermann
  • Yang Liu
  • Elizabeth Shriberg
  • Andreas Stolcke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3869)


We present baseline results for the joint segmentation and classification of dialog acts (DAs) of the ICSI Meeting Corpus. Two simple approaches based on word information are investigated and compared with previous work on the same task. We also describe several metrics to assess the quality of the segmentation alone as well as the joint performance of segmentation and classification of DAs.


Hide Markov Model Word Error Rate Match Error Segmentation Performance Sentence Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armstrong, S., et al.: Natural language queries on natural language data. In: Proc. NLDB, Burg, Germany, pp. 14–27 (2003)Google Scholar
  2. 2.
    Waibel, A., et al.: Advances in automatic meeting record creation and access. In: Proc. ICASSP, Rhodes, Greece, vol. 1, pp. 207–210 (2001)Google Scholar
  3. 3.
    Stolcke, A., et al.: Automatic detection of sentence boundaries and disfluencies based on recognized words. In: Proc. ICSLP, Sydney, Australia, vol. 5, pp. 2247–2250 (1998)Google Scholar
  4. 4.
    Shriberg, E., et al.: Prosody-based automatic segmentation of speech into sentences and topics. Speech Communication 32, 127–154 (2000)CrossRefGoogle Scholar
  5. 5.
    Ji, G., Bilmes, J.: Dialog act tagging using graphical models. In: Proc. ICASSP, Philadelphia, USA, vol. 1, pp. 33–36 (2005)Google Scholar
  6. 6.
    Ries, K.: HMM and neural network based speech act detection. In: Proc. ICASSP, Rhodes, Greece, vol. 1, pp. 207–210 (2001)Google Scholar
  7. 7.
    Stolcke, A., et al.: Dialogue act modeling for automatic tagging and recognition of conversational speech. Computational Linguistics 26, 339–371 (2000)CrossRefGoogle Scholar
  8. 8.
    Webb, N., Hepple, M., Wilks, Y.: Dialog act classification based on intra-utterance features. Cs-05-01, Dept. of Comp. Science, University of Sheffield, UK (2005)Google Scholar
  9. 9.
    Ang, J., et al.: Automatic dialog act segmentation and classification in multiparty meetings. In: Proc. ICASSP, Philadelphia, USA, vol. 1, pp. 1061–1064 (2005)Google Scholar
  10. 10.
    Liu, Y., et al.: Structural metadata research in the EARS program. In: Proc. ICASSP, Philadelphia, USA, vol. 5, pp. 957–980 (2005)Google Scholar
  11. 11.
    Shriberg, E., et al.: The ICSI meeting recorder dialog act (MRDA) corpus. In: Proc. SIGDIAL, Cambridge, USA, pp. 97–100 (2004)Google Scholar
  12. 12.
    Stolcke, A., Shriberg, E.: Automatic linguistic segmentation of conversational speech. In: Proc. ICSLP, Philadelphia, USA, vol. 2, pp. 1005–1008 (1996)Google Scholar
  13. 13.
    NIST website: Rt-03 fall rich transcription (2003),
  14. 14.
    Warnke, V., et al.: Integrated dialog act segmentation and classification using prosodic features and language models. In: Proc. 5th Europ. Conf. on Speech, Communication, and Technology, Rhodes, Greece, vol. 1, pp. 207–210 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthias Zimmermann
    • 1
  • Yang Liu
    • 1
  • Elizabeth Shriberg
    • 1
    • 2
  • Andreas Stolcke
    • 1
    • 2
  1. 1.International Computer Science InstituteUSA
  2. 2.SRI InternationalUSA

Personalised recommendations