Generic Dialogue Modeling for Multi-application Dialogue Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3869)


We present a novel approach to developing interfaces for multi-application dialogue systems. The targeted interfaces allow transparent switching between a large number of applications within one system. The approach, based on the Rapid Dialogue Prototyping Methodology (RDPM) and the Vector Space Model techniques, is composed of three main steps: (1) producing finalized dialogue models for applications using the RDPM, (2) designing an application interaction hierarchy, and (3) navigating between the applications based on the user’s application of interest.


Active Node Vector Space Model Dialogue System Dialogue State Dialogue Manager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bui, T.H., Rajman, M., Melichar, M.: Rapid dialogue prototyping methodology. In: Sojka, P., Kopeček, I., Pala, K. (eds.) TSD 2004. LNCS, vol. 3206, pp. 579–586. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bui, T.H., Rajman, M., Quarteroni, S.: Extending the Rapid Dialogue Prototyping Methodology: User Modeling. Technical Report WP4 Deliverable 4.3, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland (August 2004)Google Scholar
  3. 3.
    Chu-Carroll, J., Carpenter, B.: Vector-based natural language call routing. Computational Linguistics 25(3), 361–388 (1999)Google Scholar
  4. 4.
    Cutting, D.R., Karger, D.R., Pedersen, J.O., Tukey, J.W.: Scatter/gather: a cluster-based approach to browsing large document collections. In: SIGIR 1992: Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 318–329. ACM Press, New York (1992)Google Scholar
  5. 5.
    Forler, E.: Intelligent user interface for specialized web sites. Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland, diploma thesis edn. (2000)Google Scholar
  6. 6.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Computing Surveys 31(3), 264–323 (1999)CrossRefGoogle Scholar
  7. 7.
    Johnson, S.C.: Hierarchical Clustering Schemes. Psychometrika (2), 241–254 (1967)Google Scholar
  8. 8.
    Lin, B., Wang, H., Lee, L.: Consistent dialogue across concurrent topics based on an expert system model. In: Sixth European Conference on Speech Communication and Technology (EUROSPEECH 1999), Budapest, Hungary (1999)Google Scholar
  9. 9.
    Lisowska, A., Rajman, M., Bui, T.H.: Archivus: A system for accessing the content of recorded multimodal meetings. In: Bengio, S., Bourlard, H. (eds.) MLMI 2004. LNCS, vol. 3361, pp. 291–304. Springer, Heidelberg (2005) (Revised Selected Papers)CrossRefGoogle Scholar
  10. 10.
    Ng, H.I., Lua, K.T.: Dialog Input Ranking in a Multi-Domain Environment Using Transferable Belief Model. In: Proceedings of the 4th SIGdial Workshop on Discourse and Dialogue, Sapporo, Japan (July 2003)Google Scholar
  11. 11.
    Rajman, M., Besanon, R., Chappelier, J.-C.: Le modéle DSIR: une approche à base de sémantique distributionnelle pour la recherche documentaire. Revue Traitement Automatique des Langues (TAL) 41(2), Paris (2001)Google Scholar
  12. 12.
    Vrugt, J., Portele, T.: Application-Independent Knowledge-Processing in a Task-Oriented Speech-Dialog-System. It – Information Technology 46(6), 306–314 (December 2004), Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Human Media Interaction, Department of Computer ScienceUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations