Skip to main content

Generalized Modal Satisfiability

  • Conference paper
STACS 2006 (STACS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3884))

Included in the following conference series:

Abstract

It is well-known that modal satisfiability is PSPACE-complete [Lad77]. However, the complexity may decrease if we restrict the set of propositional operators used. Note that there exist an infinite number of propositional operators, since a propositional operator is simply a Boolean function. We completely classify the complexity of modal satisfiability for every finite set of propositional operators, i.e., in contrast to previous work, we classify an infinite number of problems. We show that, depending on the set of propositional operators, modal satisfiability is PSPACE-complete, coNP-complete, or in P. We obtain this trichotomy not only for modal formulas, but also for their more succinct representation using modal circuits.

Supported in part by grants NSF-CCR-0311021 and DFG VO 630/5-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. SIGACT News 34(4), 38–52 (2003)

    Article  Google Scholar 

  2. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: Constraint satisfaction problems. SIGACT News 35(1), 22–35 (2004)

    Article  Google Scholar 

  3. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  4. Bennett, B., Galton, A.: A unifying semantics for time and events. Artificial Intelligence 153(1-2), 13–48 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauland, M., Hemaspaandra, E., Schnoor, H., Schnoor, I.: Generalized modal satisfiability. Technical report, Theoretical Computer Science, University of Hannover (2005)

    Google Scholar 

  6. Baral, C., Zhang, Y.: Knowledge updates: Semantics and complexity issues. Artificial Intelligence 164(1-2), 209–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dalmau, V.: Computational Complexity of Problems over Generalized Formulas. PhD thesis, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (2000)

    Google Scholar 

  8. Donini, F., Hollunder, B., Lenzerini, M., Nardi, D., Nutt, W., Spaccamela, A.: The complexity of existential quantification in concept languages. Artificial Intelligence 53(2-3), 309–327 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donini, F., Lenzerini, M., Nardi, D., Nutt, W.: The complexity of concept languages. Information and Computation 134, 1–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donini, F., Massacci, F.: EXPTIME tableaux for ALC. Artificial Intelligence 124(1), 87–138 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fischer, M., Immerman, N.: Foundations of knowledge for distributed systems. In: TARK 1986: Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pp. 171–185. Morgan Kaufmann Publishers Inc., San Francisco (1986)

    Google Scholar 

  12. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalküls. Ergebnisse eines mathematischen Kolloquiums 4, 34–40 (1933)

    MATH  Google Scholar 

  13. Goldblatt, R.: Mathematical modal logic: A view of its evolution. Journal of Applied Logic 1(5-6), 309–392 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Halpern, J.: The effect of bounding the number of primitive propositional and the depth of nesting on the complexity of modal logic. Artificial Intelligence 75(2), 361–372 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hemaspaandra, E.: The complexity of poor man’s logic. Journal of Logic and Computation 11(4), 609–622 (2001); Corrected version: [Hem05]

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Hemaspaandra. The Complexity of Poor Man’s Logic, CoRR, cs.LO/9911014 (1999) (revised 2005)

    Google Scholar 

  17. Halpern, J., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence 54(2), 319–379 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Halpern, J., Moses, Y., Tuttle, M.: A knowledge-based analysis of zero knowledge. In: STOC 1988: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 132–147. ACM Press, New York (1988)

    Google Scholar 

  19. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44(4), 527–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kripke, S.: A semantical analysis of modal logic I: Normal modal propositional calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 9, 67–96 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kripke, S.: Semantical considerations on modal logic. Acta Philosophica Fennica 16, 83–94 (1963)

    MathSciNet  MATH  Google Scholar 

  22. Ladner, R.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lewis, C.: A Survey of Symbolic Logic. University of California Press, Berkley (1918)

    Google Scholar 

  24. Lewis, H.: Satisfiability problems for propositional calculi. Mathematical Systems Theory 13, 45–53 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liau, C.-J.: Belief, information acquisition, and trust in multi-agent systems – a modal logic formulation. Artificial Intelligence 149(1), 31–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lewis, C., Langford, C.: Symbolic Logic. Dover (1932)

    Google Scholar 

  27. Ladner, R., Reif, J.: The logic of distributed protocols: Preliminary report. In: TARK 1986: Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning About Knowledge, pp. 207–222. Morgan Kaufmann Publishers Inc., San Francisco (1986)

    Google Scholar 

  28. Lemmon, E., Scott, D.: An introduction to modal logic - the ’Lemmon Notes’ (1977)

    Google Scholar 

  29. Moore, R.: Reasoning about knowledge and action. Technical Report 191, AI Center, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 (1979)

    Google Scholar 

  30. McCarthy, J., Sato, M., Hayashi, T., Igarashi, S.: On the model theory of knowledge. Technical report, Stanford, CA, USA (1978)

    Google Scholar 

  31. Nordh, G.: A trichotomy in the complexity of propositional circumscription. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 257–269. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  32. Post, E.: The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  33. Reith, S.: Generalized Satisfiability Problems. PhD thesis, Fachbereich Mathematik und Informatik, Universität Würzburg (2001)

    Google Scholar 

  34. Reith, S., Vollmer, H.: Optimal satisfiability for propositional calculi and constraint satisfaction problems. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 640–649. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  35. Reith, S., Wagner, K.: The complexity of problems defined by Boolean circuits. Technical Report 255, Institut für Informatik, Universität Würzburg. In: Proceedings of the International Conference on Mathematical Foundation of Informatics, Hanoi, October 25–28, 1999 (2000)

    Google Scholar 

  36. Sistla, A., Clarke, E.: The complexity of propositional linear temporal logics. Journal of the ACM 32(3), 733–749 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schnoor, H.: The complexity of the Boolean formula value problem. Technical report, Theoretical Computer Science, University of Hannover (2005)

    Google Scholar 

  38. Segerberg, K.: An Essay in Classical Modal Logic. Filosofiska studier 13, University of Uppsala (1971)

    Google Scholar 

  39. Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical Computer Science. Springer, Berlin, Heidelberg (1999)

    Book  MATH  Google Scholar 

  41. von Wright, G.: An Essay in Modal Logic. North-Holland Publishing Company, Amsterdam (1951)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bauland, M., Hemaspaandra, E., Schnoor, H., Schnoor, I. (2006). Generalized Modal Satisfiability. In: Durand, B., Thomas, W. (eds) STACS 2006. STACS 2006. Lecture Notes in Computer Science, vol 3884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11672142_41

Download citation

  • DOI: https://doi.org/10.1007/11672142_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32301-3

  • Online ISBN: 978-3-540-32288-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics