Skip to main content

Operator Splittings for the Numerical Solution of the Maxwell’s Equations

  • Conference paper
Large-Scale Scientific Computing (LSSC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3743))

Included in the following conference series:

Abstract

In this paper, the operator splitting techniques are applied for the semi-discretized Maxwell’s equations. The semi-discretization is performed on a staggered grid structure like other frequently used methods (YEE, NZCZ, KFR). We show how these methods fit into the framework of the splitting methods. We construct a new unconditionally stable solution method, which possesses all favourable properties of the NZCZ-method, and additionally it conserves the energy density of the electromagnetic field. We compare the new method with the NZCZ-method presenting a 2D numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Darms, M., Schuhmann, R., Spachmann, H., Weiland, T.: Asymmetry Effects in the ADI-FDTD Algorithm. IEEE Microwave Guided Wave Lett. 12, 491–493 (2002)

    Google Scholar 

  2. Faragó, I., Havasi, Á.: The Mathematical Background of Operator Splitting and the Effect of Non-Commutativity. In: Margenov, S., Waśniewski, J., Yalamov, P. (eds.) LSSC 2001. LNCS, vol. 2179, pp. 264–271. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Fornberg, B.: Some Numerical Techniques for Maxwellś Equations in Different Type of Geometries. In: Ainsworth, M., Davies, P., Duncan, D., Martin, P., Rynne, B. (eds.) Topics in Computational Wave Propagation. Lecture Notes in Computational Wave Propagation, vol. 31, pp. 265–299. Springer, Berlin (2003)

    Google Scholar 

  4. Gourlay, A.R.: Splitting Methods for Time-Dependent Partial Differential Equations. In: The State of Art in Numerical Analysis, Proc. Conf. Univ. York, Heslington. Acad. Press, London (1977)

    Google Scholar 

  5. Chen, C.C.-P., Lee, T.-W., Murugesan, N., Hagness, S.C.: Generalized FDTDADI: An Unconditionally Stable Full-Wave Maxwellś Equations Solver for VLSI Interconnect Modeling Computer Aided Design. In: ICCAD 2000. IEEE/ACM International Conference, pp. 156–163 (2000)

    Google Scholar 

  6. Horváth, R.: Uniform Treatment of the Numerical Time-Integration of the Maxwell Equations. In: Proceedings Scientific Computing in Electrical Engineering, SCEE-2002, Eindhoven, The Netherlands, June 23-28. Lecture Notes in Computational Science and Engineering, pp. 231–239 (2003)

    Google Scholar 

  7. Kole, J.S., Figge, M.T., De Raedt, H.: Unconditionally Stable Algorithms to Solve the Time-Dependent Maxwell Equations. Phys. Rev. E 64, 066705 (2001)

    Article  Google Scholar 

  8. Liu, Y.: Fourier Analysis of Numerical Algorithms for the Maxwell Equations. Journal of Comp. Phys. 124, 396–416 (1996)

    Article  MATH  Google Scholar 

  9. Namiki, T.: A New FDTD Algorithm Based on Alternating-Direction Implicit Method. IEEE Transactions on Microwave Theory and Techniques 47(10), 2003–2007 (1999)

    Article  Google Scholar 

  10. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. Artech House, Boston (2000)

    MATH  Google Scholar 

  11. Zheng, F., Chen, Z., Zhang, J.: A Finite-Difference Time-Domain Method Without the Courant Stability Conditions. IEEE Microwave Guided Wave Lett. 9, 441–443 (1999)

    Article  Google Scholar 

  12. Zheng, F., Chen, Z., Zhang, J.: Toward the Development of a Three-Dimensional Unconditionally Stable Finite-Difference Time-Domain Method. IEEE Trans. Microwave Theory and Techniques 48(9), 1550–1558 (2000)

    Article  Google Scholar 

  13. Yee, K.S.: Numerical Solution of Initial Boundary Value Problems Involving Maxwellś Equations in Isotropic Media. IEEE Transactions on Antennas and Propagation 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Horváth, R. (2006). Operator Splittings for the Numerical Solution of the Maxwell’s Equations. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds) Large-Scale Scientific Computing. LSSC 2005. Lecture Notes in Computer Science, vol 3743. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11666806_41

Download citation

  • DOI: https://doi.org/10.1007/11666806_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31994-8

  • Online ISBN: 978-3-540-31995-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics