Skip to main content

Label-Free Monitoring of 3D Tissue Models via Electrical Impedance Spectroscopy

  • Chapter
  • First Online:

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 2))

Abstract

There is a strong tendency in in vitro testing of drugs or toxins to use 3D tissue models as biological test objects rather than 2D cell monolayers. The latter have been used with increasing success throughout the last decades even though their limitations were well-known. Two-dimensional cell layers cannot fully mimic the complex architecture of real tissue mainly because cell-cell interactions, cell communication, cell signaling, extracellular matrix composition, and all the physicochemical properties of the microenvironment are quite different. Motivated by these shortcoming, 3D tissue models have been developed over the years capable of overcoming some of the limitations of 2D tissue. However, for successful screening campaigns and toxicology assessment, it is not sufficient to only have an appropriate tissue model, and it also takes analytical techniques to read the biological response to a given exposure to drugs or toxins. It has been notoriously difficult to find experimental approaches that are capable of reporting from the inside of a 3D tissue model without destroying it. Because of its noninvasive nature and the ability of AC currents to permeate through tissue, impedance analysis has emerged as one potential technique to fill this gap. The current chapter will summarize the state of the art in impedance-based monitoring of 3D tissue models with particular focus on electrode design and the constraints that are associated with it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Freshney R (2011) Culture of animal cells: a manual of basic technique and specialized applications. Wiley, Hoboken

    Google Scholar 

  2. Fitzgerald KA, Malhotra M, Curtin CM, O’Brien FJ, O’Driscoll CM (2015) Life in 3D is never flat: 3D models to optimise drug delivery. J Control Release 215:39–54. https://doi.org/10.1016/j.jconrel.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  3. Edmondson R, Broglie JJ, Adcock AF, Yang L (2014) Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol 12:207–218. https://doi.org/10.1089/adt.2014.573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hartung T (2014) 3D – a new dimension of in vitro research. Adv Drug Deliv Rev 69–70:vi. https://doi.org/10.1016/j.addr.2014.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alexander FA, Price DT, Bhansali S (2013) From cellular cultures to cellular spheroids: is impedance spectroscopy a viable tool for monitoring multicellular spheroid (MCS) drug models? IEEE Rev Biomed Eng 6:63–76. https://doi.org/10.1109/RBME.2012.2222023

    Article  PubMed  Google Scholar 

  6. Kloss D, Fischer M, Rothermel A, Simon JC, Robitzki AA (2008) Drug testing on 3D in vitro tissues trapped on a microcavity chip. Lab Chip 8(6):879–884

    CAS  PubMed  Google Scholar 

  7. Hildebrandt C, Büth H, Cho S, Impidjati, Thielecke H (2010) Detection of the osteogenic differentiation of mesenchymal stem cells in 2D and 3D cultures by electrochemical impedance spectroscopy. J Biotechnol 148(1):83–90. https://doi.org/10.1016/j.jbiotec.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  8. Seidel D, Krinke D, Jahnke H-G, Hirche A, Kloß D, Mack TG, Striggow F, Robitzki A (2012) Induced tauopathy in a novel 3D-culture model mediates neurodegenerative processes: a real-time study on biochips. PLoS One 7(11):e49150

    CAS  PubMed  PubMed Central  Google Scholar 

  9. McCoy MH, Wang E (2005) Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time. J Virol Methods 130(1):157–161

    CAS  PubMed  Google Scholar 

  10. Åberg P, Nicander I, Hansson J, Geladi P, Holmgren U, Ollmar S (2004) Skin cancer identification using multifrequency electrical impedance-a potential screening tool. IEEE Trans Biomed Eng 51(12):2097–2102

    PubMed  Google Scholar 

  11. Huang X, Greve D, Nguyen D, Domach M (2003) Impedance based biosensor array for monitoring mammalian cell behavior. Sensors, 2003. Proceedings of IEEE, vol 1. IEEE, Piscataway

    Google Scholar 

  12. Judy JW (2001) Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater Struct 10(6):1115

    Google Scholar 

  13. Rahman ARA, Justin G, Guiseppi-Elie A (2009) Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed Microdevices 11(1):75–85

    Google Scholar 

  14. Park TH, Shuler ML (2003) Integration of cell culture and microfabrication technology. Biotechnol Prog 19(2):243–253

    CAS  PubMed  Google Scholar 

  15. Matysik F-M, Meister A, Werner G (1995) Electrochemical detection with microelectrodes in capillary flow systems. Anal Chim Acta 305(1):114–120

    CAS  Google Scholar 

  16. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  17. Wegener J, Keese CR, Giaever I (2000) Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp Cell Res 259(1):158–166

    CAS  PubMed  Google Scholar 

  18. Price DT, Rahman ARA, Bhansali S (2009) Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS). Biosens Bioelectron 24(7):2071–2076

    CAS  PubMed  Google Scholar 

  19. Fosdick LE, Anderson JL (1986) Optimization of microelectrode array geometry in a rectangular flow channel detector. Anal Chem 58(12):2481–2485

    CAS  Google Scholar 

  20. Min J, Baeumner AJ (2004) Characterization and optimization of interdigitated ultramicroelectrode arrays as electrochemical biosensor transducers. Electroanalysis 16(9):724–729

    CAS  Google Scholar 

  21. Sandison ME, Anicet N, Glidle A, Cooper JM (2002) Optimization of the geometry and porosity of microelectrode arrays for sensor design. Anal Chem 74(22):5717–5725

    CAS  PubMed  Google Scholar 

  22. Lempka SF, Johnson MD, Barnett DW, Moffitt MA, Otto KJ, Kipke DR, McIntyre CC (2006) Optimization of microelectrode design for cortical recording based on thermal noise considerations. Engineering in medicine and biology society, 2006. EMBS’06. 28th annual international conference of the IEEE. IEEE, Piscataway

    Google Scholar 

  23. Wang L, Wang H, Mitchelson K, Yu Z, Cheng J (2008) Analysis of the sensitivity and frequency characteristics of coplanar electrical cell–substrate impedance sensors. Biosens Bioelectron 24(1):14–21

    PubMed  Google Scholar 

  24. English AE, Moy AB, Kruse KL, Ward RC, Kirkpatrick SS, Goldman MH (2009) Instrumental noise estimates stabilize and quantify endothelial cell micro-impedance barrier function parameter estimates. Biomed Signal Proc Control 4(2):86–93

    Google Scholar 

  25. Curtis TM, Tabb J, Romeo L, Schwager SJ, Widder MW, Van der Schalie WH (2009) Improved cell sensitivity and longevity in a rapid impedance-based toxicity sensor. DTIC document. J Appl Toxicol 29:374–380

    CAS  PubMed  Google Scholar 

  26. Pejcic B, De Marco R (2006) Impedance spectroscopy: over 35 years of electrochemical sensor optimization. Electrochim Acta 51(28):6217–6229

    CAS  Google Scholar 

  27. Rahman ARA, Price DT, Bhansali S (2007) Effect of electrode geometry on the impedance evaluation of tissue and cell culture. Sensors Actuators B Chem 127(1):89–96

    Google Scholar 

  28. Rahman A, Register J, Vuppala G, Bhansali S (2008) Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap). Physiol Meas 29(6):S227

    CAS  PubMed  Google Scholar 

  29. Canali C, Heiskanen A, Muhammad HB, Høyum P, Pettersen F-J, Hemmingsen M, Wolff A, Dufva M, Martinsen ØG, Emnéus J (2015) Bioimpedance monitoring of 3D cell culturing – complementary electrode configurations for enhanced spatial sensitivity. Biosens Bioelectron 63:72–79

    CAS  PubMed  Google Scholar 

  30. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543. https://doi.org/10.1016/S0142-9612(00)00121-6

    Article  CAS  PubMed  Google Scholar 

  31. Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol 695:17–39. https://doi.org/10.1007/978-1-60761-984-0_2

    Article  CAS  PubMed  Google Scholar 

  32. Lanza R, Langer R, Vacanti J (2013) Principles of tissue engineering. Academic Press, San Diego

    Google Scholar 

  33. Dutta RC, Dutta AK (2009) Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv 27:334–339. https://doi.org/10.1016/j.biotechadv.2009.02.002

    Article  CAS  PubMed  Google Scholar 

  34. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  35. Rimann M, Graf-Hausner U (2012) Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 23:803–809. https://doi.org/10.1016/j.copbio.2012.01.011

    Article  CAS  PubMed  Google Scholar 

  36. Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed 12:107–124. https://doi.org/10.1163/156856201744489

    Article  CAS  PubMed  Google Scholar 

  37. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  38. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    CAS  PubMed  Google Scholar 

  39. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663. https://doi.org/10.1002/bit.22361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041. https://doi.org/10.1016/j.biomaterials.2012.04.050

    Article  CAS  PubMed  Google Scholar 

  41. Fisher RJ, Peattie RA (2007) Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems. Adv Biochem Eng Biotechnol 103:1–73

    CAS  PubMed  Google Scholar 

  42. Nair LS, Laurencin CT (2006) Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Eng Biotechnol 102:47–90

    CAS  PubMed  Google Scholar 

  43. Velema J, Kaplan D (2006) Biopolymer-based biomaterials as scaffolds for tissue engineering. Adv Biochem Eng Biotechnol 102:187–238

    CAS  PubMed  Google Scholar 

  44. Lin S-P, Kyriakides TR, Chen J-JJ (2009) On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays. Biomaterials 30(17):3110–3117

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lei KF, Wu M-H, Liao P-Y, Chen Y-M, Pan T-M (2011) Development of a micro-scale perfusion 3D cell culture biochip with an incorporated electrical impedance measurement scheme for the quantification of cell number in a 3D cell culture construct. Microfluid Nanofluid 12(1):117–125. https://doi.org/10.1007/s10404-011-0854-x

    Article  CAS  Google Scholar 

  46. Lei KF, Wu M-H, Hsu C-W, Chen Y-D (2014) Real-time and non-invasive impedimetric monitoring of cell proliferation and chemosensitivity in a perfusion 3D cell culture microfluidic chip. Biosens Bioelectron 51:16–21. https://doi.org/10.1016/j.bios.2013.07.031

    Article  CAS  PubMed  Google Scholar 

  47. Antonijevic M, Petrovic M (2008) Copper corrosion inhibitors. A review. Int J Electrochem Sci 3(1):1–28

    CAS  Google Scholar 

  48. Lei KF, Wu Z-M, Huang C-H (2015) Impedimetric quantification of the formation process and the chemosensitivity of cancer cell colonies suspended in 3D environment. Biosens Bioelectron 74:878–885

    CAS  PubMed  Google Scholar 

  49. Canali C, Mazzoni C, Larsen LB, Heiskanen A, Martinsen Ø, Wolff A, Dufva M, Emnéus J (2015) An impedance method for spatial sensing of 3D cell constructs – towards applications in tissue engineering. Analyst 140(17):6079–6088

    CAS  PubMed  Google Scholar 

  50. Lee S-M, Han N, Lee R, Choi I-H, Park Y-B, Shin J-S, Yoo K-H (2016) Real-time monitoring of 3D cell culture using a 3D capacitance biosensor. Biosens Bioelectron 77:56–61

    CAS  PubMed  Google Scholar 

  51. Valero T, Moschopoulou G, Kintzios S, Hauptmann P, Naumann M, Jacobs T (2010) Studies on neuronal differentiation and signalling processes with a novel impedimetric biosensor. Biosens Bioelectron 26(4):1407–1413

    CAS  PubMed  Google Scholar 

  52. Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC (2013) Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng 15:115–136. https://doi.org/10.1146/annurev-bioeng-071812-152423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen G, Qi Y, Niu L, DI T, Zhong J, Fang T, Yan W (2015) Application of the cell sheet technique in tissue engineering. Biomed Rep 3:749–757. https://doi.org/10.3892/br.2015.522

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lin R-Z, Lin R-Z, Chang H-Y (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3:1172–1184. https://doi.org/10.1002/biot.200700228

    Article  CAS  PubMed  Google Scholar 

  55. Khetani SR, Berger DR, Ballinger KR, Davidson MD, Lin C, Ware BR (2015) Microengineered liver tissues for drug testing. J Lab Autom 20:216–250. https://doi.org/10.1177/2211068214566939

    Article  CAS  PubMed  Google Scholar 

  56. Yoon No D, Lee K-H, Lee J, Lee S-H (2015) 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip 15:3822–3837. https://doi.org/10.1039/C5LC00611B

    Article  CAS  PubMed  Google Scholar 

  57. Fukuda J, Nakazawa K (2011) Hepatocyte spheroid arrays inside microwells connected with microchannels. Biomicrofluidics 5:22205. https://doi.org/10.1063/1.3576905

    Article  CAS  PubMed  Google Scholar 

  58. Gevaert E, Dollé L, Billiet T, Dubruel P, van Grunsven L, van Apeldoorn A, Cornelissen R (2014) High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering. PLoS One 9:e105171. https://doi.org/10.1371/journal.pone.0105171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Napolitano AP, Dean DM, Man AJ, Youssef J, Ho DN, Rago AP, Lech MP, Morgan JR (2007) Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques 43:494–500. https://doi.org/10.2144/000112591

    Article  CAS  PubMed  Google Scholar 

  60. Molckovsky A, Wilson B (2001) Monitoring of cell and tissue responses to photodynamic therapy by electrical impedance spectroscopy. Phys Med Biol 46(4):983

    CAS  PubMed  Google Scholar 

  61. Jahnke H-G, Steel D, Fleischer S, Seidel D, Kurz R, Vinz S, Dahlenborg K, Sartipy P, Robitzki AA (2013) A novel 3D label-free monitoring system of hES-derived cardiomyocyte clusters: a step forward to in vitro cardiotoxicity testing. PLoS One 8(7):e68971

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Poenick S, Jahnke H-G, Eichler M, Frost S, Lilie H, Robitzki AA (2014) Comparative label-free monitoring of immunotoxin efficacy in 2D and 3D mamma carcinoma in vitro models by impedance spectroscopy. Biosens Bioelectron 53:370–376

    CAS  PubMed  Google Scholar 

  63. Krinke D, Jahnke H-G, Mack TG, Hirche A, Striggow F, Robitzki AA (2010) A novel organotypic tauopathy model on a new microcavity chip for bioelectronic label-free and real time monitoring. Biosens Bioelectron 26(1):162–168

    CAS  PubMed  Google Scholar 

  64. Bilandzic M, Stenvers KL (2014) Assessment of ovarian cancer spheroid attachment and invasion of mesothelial cells in real time. J Vis Exp 87. https://www.jove.com/video/51655/assessment-ovarian-cancer-spheroid-attachment-invasion-mesothelial

  65. Linderholm P, Braschler T, Vannod J, Barrandon Y, Brouard M, Renaud P (2006) Two-dimensional impedance imaging of cell migration and epithelial stratification. Lab Chip 6(9):1155–1162

    CAS  PubMed  Google Scholar 

  66. Linderholm P, Marescot L, Loke MH, Renaud P (2008) Cell culture imaging using microimpedance tomography. IEEE Trans Biomed Eng 55(1):138–146

    PubMed  Google Scholar 

  67. Moulton S, Barisci J, Bath A, Stella R, Wallace G (2004) Studies of double layer capacitance and electron transfer at a gold electrode exposed to protein solutions. Electrochim Acta 49(24):4223–4230

    CAS  Google Scholar 

  68. Newman J (1966) Resistance for flow of current to a disk. J Electrochem Soc 113(5):501–502

    CAS  Google Scholar 

  69. Alexander FA Jr, Huey EG, Price DT, Bhansali S (2012) Real-time impedance analysis of silica nanowire toxicity on epithelial breast cancer cells. Analyst 137(24):5823–5828

    CAS  PubMed  Google Scholar 

  70. Eichler M, Jahnke H-G, Krinke D, Müller A, Schmidt S, Azendorf R, Robitzki AA (2015) A novel 96-well multielectrode array based impedimetric monitoring platform for comparative drug efficacy analysis on 2D and 3D brain tumor cultures. Biosens Bioelectron 67:582–589

    CAS  PubMed  Google Scholar 

  71. Thielecke H, Mack A, Robitzki A (2001) Biohybrid microarrays – impedimetric biosensors with 3D in vitro tissues for toxicological and biomedical screening. Fresenius J Anal Chem 369(1):23–29

    CAS  PubMed  Google Scholar 

  72. Khanna P, Luongo K, Strom JA, Bhansali S (2010) Sharpening of hollow silicon microneedles to reduce skin penetration force. J Micromech Microeng 20(4):045011

    Google Scholar 

  73. Alexander F (2014) RTEMIS: real-time tumoroid and environment monitoring using impedance spectroscopy and pH sensing. Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5168

  74. Wiest J, Stadthagen T, Schmidhuber M, Brischwein M, Ressler J, Raeder U, Grothe H, Melzer A, Wolf B (2006) Intelligent mobile lab for metabolics in environmental monitoring. Anal Lett 39(8):1759–1771

    CAS  Google Scholar 

  75. Otto AM, Brischwein M, Niendorf A, Henning T, Motrescu E, Wolf B (2003) Microphysiological testing for chemosensitivity of living tumor cells with multiparametric microsensor chips. Cancer Detect Prev 27(4):291–296

    CAS  PubMed  Google Scholar 

  76. Shinawi TF, Kimmel DW, Cliffel DE (2013) Multianalyte microphysiometry reveals changes in cellular bioenergetics upon exposure to fluorescent dyes. Anal Chem 85(24):11677–11680

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Alexander Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alexander, F., Eggert, S., Price, D. (2019). Label-Free Monitoring of 3D Tissue Models via Electrical Impedance Spectroscopy. In: Wegener, J. (eds) Label-Free Monitoring of Cells in vitro. Bioanalytical Reviews, vol 2. Springer, Cham. https://doi.org/10.1007/11663_2018_5

Download citation

Publish with us

Policies and ethics