Skip to main content

On the Use of the Quartz Crystal Microbalance for Whole-Cell-Based Biosensing

  • Chapter
  • First Online:
  • 496 Accesses

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 2))

Abstract

The quartz crystal microbalance (QCM) can be used and has often been used to study the interactions of cells with man-made surfaces. The instrument as such is simple. For screening purposes, one can easily run numerous resonators in parallel. The main problem is the interpretation of experimental data. Living cells by their very nature are enormously complicated and the limited amount of information obtained from a QCM experiment therefore is not easily turned into a meaningful diagnostic statement. In the first part, the text elaborates on the technical background with special emphasis on quantitative modeling. While thorough quantitative modeling is difficult, simplified models (which have a limited scope and which provide limited answers) can be applied. The text provides checks on consistency and applicability. These simple models are the Sauerbrey film (only applicable to biofilms on torsional resonators), the semi-infinite viscoelastic medium, and the coupled resonance. In search for more depth of information, one may explore novel sensing dimensions, which include the variation of amplitude, exploitation of piezoelectric stiffening, the analysis of temporal variations, and temperature sweeps. Given the instrument’s simplicity, one may combine the QCM with imaging techniques, with optical spectroscopy (even in transmission), and with electrical impedance spectroscopy. The situation is open. Probing whole cells and cell layers with a QCM is already a robust and reliable technique. A better understanding of data interpretation will expand the scope of possible applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Janata J (2009) Principles of chemical sensors. Springer, Berlin

    Google Scholar 

  2. Rock F, Barsan N, Weimar U (2008) Electronic nose: current status and future trends. Chem Rev 108(2):705–725

    PubMed  Google Scholar 

  3. Bousse L (1996) Whole cell biosensors. Sens Actuators B Chem 34(1–3):270–275

    CAS  Google Scholar 

  4. Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 87:269–305

    CAS  PubMed  Google Scholar 

  5. Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA (1999) Development and application of cell-based biosensors. Ann Biomed Eng 27(6):697–711

    CAS  PubMed  Google Scholar 

  6. Gryte DM, Ward MD, Hu WS (1993) Real-time measurement of anchorage-dependent cell-adhesion using a quartz crystal microbalance. Biotechnol Prog 9(1):105–108

    CAS  PubMed  Google Scholar 

  7. Wegener J, Janshoff A, Galla HJ (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J Biophys Lett 28(1):26–37

    CAS  Google Scholar 

  8. Zhou T, Marx KA, Warren M, Schulze H, Braunhut SJ (2000) The quartz crystal microbalance as a continuous monitoring tool for the study of endothelial cell surface attachment and growth. Biotechnol Prog 16(2):268–277

    CAS  PubMed  Google Scholar 

  9. Wegener J, Seebach J, Janshoff A, Galla HJ (2000) Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. Biophys J 78(6):2821–2833

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Redepenning J, Schlesinger TK, Mechalke EJ, Puleo DA, Bizios R (1993) Osteoblast attachment monitored with a quartz-crystal microbalance. Anal Chem 65(23):3378–3381

    CAS  PubMed  Google Scholar 

  11. Wegener J, Janshoff A, Steinem C (2001) The quartz crystal microbalance as a novel means to study cell-substrate interactions in situ. Cell Biochem Biophys 34(1):121–151

    CAS  PubMed  Google Scholar 

  12. Heitmann V, Reiss B, Wegener J (2007) The quartz crystal microbalance in cell biology: basics and applications. In: Steinem C, Janshoff A (eds) Piezoelectric sensors. Springer, Berlin

    Google Scholar 

  13. Saitakis M, Gizeli E (2012) Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell Mol Life Sci 69(3):357–371

    CAS  PubMed  Google Scholar 

  14. Reviakine I, Johannsmann D, Richter RP (2011) Hearing what you cannot see and visualizing what you hear: interpreting quartz crystal microbalance data from solvated interfaces. Anal Chem 83(23):8838–8848

    CAS  PubMed  Google Scholar 

  15. Beck R, Pittermann U, Weil KG (1988) Impedance analysis of quartz oscillators, contacted on one side with a liquid. Ber Bunsen Phys Chem 92(11):1363–1368

    CAS  Google Scholar 

  16. Böttcher A, Peschel A, Johannsmann D (2015) A backing plate for quartz crystal resonators improves the baseline stability and the baseline reproducibility. Meas Sci Technol 26:035303

    Google Scholar 

  17. Länge K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519

    PubMed  Google Scholar 

  18. Gaso Rocha MA, Jiménez Y, Laurent FA, Arnau A (2013) Love wave biosensors: a review. In: Rinken T (ed) State of the art in biosensors – general aspects. Intech, London. https://doi.org/10.5772/53077. http://www.intechopen.com/books/state-of-the-art-in-biosensors-general-aspects/love-wave-biosensors-a-review. 17 Dec 2015

    Chapter  Google Scholar 

  19. March C, Garcia JV, Sanchez A, Arnau A, Jimenez Y, Garcia P, Manclus JJ, Montoya A (2015) High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors. Biosens Bioelectron 65:1–8

    CAS  PubMed  Google Scholar 

  20. Zimmermann B, Lucklum R, Hauptmann P, Rabe J, Büttgenbach S (2001) Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sens Actuators B Chem 76(1–3):47–57

    CAS  Google Scholar 

  21. Wingqvist G, Bjurstrom J, Liljeholm L, Yantchev V, Katardjiev I (2007) Shear mode AlN thin film electro-acoustic resonant sensor operation in viscous media. Sens Actuators B Chem 123(1):466–473

    CAS  Google Scholar 

  22. Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung Dünner Schichten und zur Mikrowagung. Z Phys 155(2):206–222

    CAS  Google Scholar 

  23. Bruckenstein S, Shay M (1985) Experimental aspects of use of the quartz crystal microbalance in solution. Electrochim Acta 30(10):1295–1300

    CAS  Google Scholar 

  24. Nomura T, Okuhara M (1982) Frequency-shifts of piezoelectric quartz crystals immersed in organic liquids. Anal Chim Acta 142:281–284

    CAS  Google Scholar 

  25. Johannsmann D (1999) Viscoelastic analysis of organic thin films on quartz resonators. Macromol Chem Phys 200(3):501–516

    CAS  Google Scholar 

  26. Voinova MV, Jonson M, Kasemo B (2002) ‘Missing mass’ effect in biosensor’s QCM applications. Biosens Bioelectron 17(10):835–841

    CAS  PubMed  Google Scholar 

  27. Tsionsky V, Daikhin L, Zilberman G, Gileadi E (1997) Response of the EQCM for electrostatic and specific adsorption on gold and silver electrodes. Faraday Discuss 107:337–350

    CAS  Google Scholar 

  28. Johannsmann D (2014) The quartz crystal microbalance in soft matter research: fundamentals and modeling. Springer, Berlin

    Google Scholar 

  29. Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5):1099–1120

    CAS  PubMed  Google Scholar 

  30. Ward MD, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249(4972):1000–1007

    CAS  PubMed  Google Scholar 

  31. Cooper MA (2003) Label-free screening of bio-molecular interactions. Anal Bioanal Chem 377(5):834–842

    CAS  PubMed  Google Scholar 

  32. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539

    CAS  PubMed  Google Scholar 

  33. Lucklum R, Hauptmann P (2006) Acoustic microsensors-the challenge behind microgravimetry. Anal Bioanal Chem 384(3):667–682

    CAS  PubMed  Google Scholar 

  34. Steinem C, Janshoff A (2007) Piezoeletric sensors. Springer, Heidelberg

    Google Scholar 

  35. Rodahl M, Hook F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246

    CAS  Google Scholar 

  36. Johannsmann D, Reviakine I, Rojas E, Gallego M (2008) Effect of sample heterogeneity on the interpretation of QCM(−D) data: comparison of combined quartz crystal microbalance/atomic force microscopy measurements with finite element method modeling. Anal Chem 80(23):8891–8899

    CAS  PubMed  Google Scholar 

  37. Kanazawa KK, Gordon JG (1985) Frequency of a quartz microbalance in contact with liquid. Anal Chem 57(8):1770–1771

    CAS  Google Scholar 

  38. Borovikov AP (1976) Measurement of viscosity of media by means of shear vibration of plane piezoresonators. Instrum Exp Tech 19(1):223–224

    Google Scholar 

  39. Tabidze AA, Kazakov RK (1983) High-frequency ultrasonic unit for measuring the complex shear modulus of liquids. Meas Tech USSR 26(1):24–27

    Google Scholar 

  40. Stockbridge CD (1966) In: Beckum KH (ed) Vacuum microbalance techniques, vol 5. 4th edn. Plenum Press, New York

    Google Scholar 

  41. Glassford APM (1978) Response of a quartz crystal microbalance to a liquid deposit. J Vac Sci Technol 15(6):1836–1843

    Google Scholar 

  42. Mason WP (1948) Piezoelectric crystals and their applications to ultrasonics. Van Nostrand, Princeton

    Google Scholar 

  43. Dybwad GL (1985) A sensitive new method for the determination of adhesive bonding between a particle and a substrate. J Appl Phys 58(7):2789–2790

    CAS  Google Scholar 

  44. Scholz M, Noack V, Pechlivanis I, Engelhardt M, Fricke B, Linstedt U, Brendel B, Schmieder K, Ermert H, Harders A (2005) Vibrography during tumor neurosurgery. J Ultrasound Med 24(7):985–992

    PubMed  Google Scholar 

  45. Hemsel T, Stroop R, Uribe DO, Wallaschek J (2007) Resonant vibrating sensors for tactile tissue differentiation. J Sound Vib 308(3–5):441–446

    Google Scholar 

  46. Stroop R, Uribe DO, Martinez MO, Brokelmann M, Hemsel T, Wallaschek J (2008) Tactile tissue characterisation by piezoelectric systems. J Electroceram 20(3–4):237–241

    Google Scholar 

  47. Valtorta D, Mazza E (2006) Measurement of rheological properties of soft biological tissue with a novel torsional resonator device. Rheol Acta 45(5):677–692

    CAS  Google Scholar 

  48. Bressel A, Schultze JW, Khan W, Wolfaardt GM, Rohns HP, Irmscher R, Schoning MJ (2003) High resolution gravimetric, optical and electrochemical investigations of microbial biofilm formation in aqueous systems. Electrochim Acta 48(20–22):3363–3372

    CAS  Google Scholar 

  49. Tessier L, Patat F, Schmitt N, Lethiecq M, Frangin Y, Guilloteau D (1994) Significance of mass and viscous loads discrimination for an at-quartz blood-group immunosensor. Sens Actuators B Chem 19(1–3):698–703

    CAS  Google Scholar 

  50. Bandey HL, Cernosek RW, Lee WE, Ondrovic LE (2004) Blood rheological characterization using the thickness-shear mode resonator. Biosens Bioelectron 19(12):1657–1665

    CAS  PubMed  Google Scholar 

  51. Muller L, Sinn S, Drechsel H, Ziegler C, Wendel HP, Northoff H, Gehring FK (2010) Investigation of prothrombin time in human whole-blood samples with a quartz crystal biosensor. Anal Chem 82(2):658–663

    PubMed  Google Scholar 

  52. Plunkett MA, Wang ZH, Rutland MW, Johannsmann D (2003) Adsorption of pNIPAM layers on hydrophobic gold surfaces, measured in situ by QCM and SPR. Langmuir 19(17):6837–6844

    CAS  Google Scholar 

  53. Eggers F, Funck T (1987) Method for measurement of shear-wave impedance in the Mhz region for liquid samples of approximately 1 Ml. J Phys E Sci Instrum 20(5):523–530

    CAS  Google Scholar 

  54. Bücking W, Du B, Turshatov A, Konig AM, Reviakine I, Bode B, Johannsmann D (2007) Quartz crystal microbalance based on torsional piezoelectric resonators. Rev Sci Instrum 78(7):074903

    PubMed  Google Scholar 

  55. Sievers P, Moss C, Schroeder U, Johannsmann D (2018) Use of torsional resonators to monitor electroactive biofilms. Biosens Bioelectron 110:225–232

    CAS  PubMed  Google Scholar 

  56. Bode B (1984) Entwicklung eines Quarzviskometers für Messungen bei hohen Drücken. Clausthal University of Technology, Clausthal-Zellerfeld

    Google Scholar 

  57. Vaughan RD, O'Sullivan CK, Guilbault GG (2001) Development of a quartz crystal microbalance (QCM) immunosensor for the detection of Listeria monocytogenes. Enzym Microb Technol 29(10):635–638

    CAS  Google Scholar 

  58. Molino PJ, Hodson OA, Quinn JF, Wetherbee R (2008) The quartz crystal microbalance: a new tool for the investigation of the bioadhesion of diatoms to surfaces of differing surface energies. Langmuir 24(13):6730–6737

    CAS  PubMed  Google Scholar 

  59. Poitras C, Fatisson J, Tufenkji N (2009) Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents. Water Res 43(10):2631–2638

    CAS  PubMed  Google Scholar 

  60. Wang Y, Narain R, Liu Y (2014) Study of bacterial adhesion on different glycopolymer surfaces by quartz crystal microbalance with dissipation. Langmuir 30(25):7377–7387

    CAS  PubMed  Google Scholar 

  61. Peschel A, Langhoff A, Johannsmann D (2015) Coupled resonances allow to study the aging of adhesive contacts between a QCM surface and single, micrometer-sized particles. Nanotechnology 26(48):484001–484009

    PubMed  Google Scholar 

  62. Johannsmann D (2016) Towards vibrational spectroscopy on surface-attached colloids performed with a quartz crystal microbalance. Sens Biosens Res 11:86–93

    Google Scholar 

  63. Olsson ALJ, van der Mei HC, Johannsmann D, Busscher HJ, Sharma PK (2012) Probing colloid-substratum contact stiffness by acoustic sensing in a liquid phase. Anal Chem 84(10):4504–4512

    CAS  PubMed  Google Scholar 

  64. Olsson ALJ, Arun N, Kanger JS, Busscher HJ, Ivanov IE, Camesano TA, Chen Y, Johannsmann D, van der Mei HC, Sharma PK (2012) The influence of ionic strength on the adhesive bond stiffness of oral streptococci possessing different surface appendages as probed using AFM and QCM-D. Soft Matter 8(38):9870–9876

    CAS  Google Scholar 

  65. Cooper MA, Dultsev FN, Minson T, Ostanin VP, Abell C, Klenerman D (2001) Direct and sensitive detection of a human virus by rupture event scanning. Nat Biotechnol 19(9):833–837

    CAS  PubMed  Google Scholar 

  66. Edvardsson M, Rodahl M, Hook F (2006) Investigation of binding event perturbations caused by elevated QCM-D oscillation amplitude. Analyst 131(7):822–828

    CAS  PubMed  Google Scholar 

  67. Heitmann V, Wegener J (2007) Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes. Anal Chem 79(9):3392–3400

    CAS  PubMed  Google Scholar 

  68. Nosek J (1999) Drive level dependence of the resonant frequency in BAW quartz resonators and his modeling. IEEE Trans Ultrason Ferroelectr Freq Control 46(4):823–829

    CAS  PubMed  Google Scholar 

  69. http://www.am1.us/Local_Papers/U11625%20VIG-TUTORIAL.pdf. Accessed 18 June 2014

  70. Berg S, Johannsmann D (2003) High speed microtribology with quartz crystal resonators. Phys Rev Lett 91(14):145505

    CAS  PubMed  Google Scholar 

  71. Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. Trans ASME J Appl Mech 20(3):327–344

    Google Scholar 

  72. Leopoldes J, Conrad G, Jia X (2013) Onset of sliding in amorphous films triggered by high-frequency oscillatory shear. Phys Rev Lett 110(24):248301

    CAS  PubMed  Google Scholar 

  73. Hanke S, Petri J, Johannsmann D (2013) Partial slip in mesoscale contacts: dependence on contact size. Phys Rev E 88(3):032408

    Google Scholar 

  74. Vlachová J, König R, Johannsmann D (2015) Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium. Beilstein J Nanotechnol 6:845–856

    PubMed  PubMed Central  Google Scholar 

  75. Borovsky B, Booth A, Manlove E (2007) Observation of microslip dynamics at high-speed microcontacts. Appl Phys Lett 91(11):114101

    Google Scholar 

  76. Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, Clausthal-Zellerfeld

    Google Scholar 

  77. Riley N (2001) Steady streaming. Annu Rev Fluid Mech 33:43–65

    Google Scholar 

  78. Riley N (1998) Acoustic streaming. Theor Comput Fluid Dyn 10(1–4):349–356

    Google Scholar 

  79. Friend J, Yeo LY (2011). Rev Mod Phys 83:647

    Google Scholar 

  80. König R, Langhoff A, Johannsmann D (2014) Steady flows above a quartz crystal resonator driven at elevated amplitude. Phys Rev E 89(4):043016

    Google Scholar 

  81. Ghosh SK, Ostanin VP, Johnson CL, Lowe CR, Seshia AA (2011) Probing biomolecular interaction forces using an anharmonic acoustic technique for selective detection of bacterial spores. Biosens Bioelectron 29(1):145–150

    CAS  PubMed  Google Scholar 

  82. Salazar-Banda GR, Felicetti MA, Goncalves JAS, Coury JR, Aguiar ML (2007) Determination of the adhesion force between particles and a flat surface, using the centrifuge technique. Powder Technol 173(2):107–117

    CAS  Google Scholar 

  83. Rodahl M, Hook F, Krozer A, Brzezinski P, Kasemo B (1995) Quartz-crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66(7):3924–3930

    CAS  Google Scholar 

  84. Driscoll MM, Healey DJ (1971) Voltage-controlled crystal oscillators. IEEE Trans Electron Dev ED18(8):528

    Google Scholar 

  85. Shana ZA, Zong H, Josse F, Jeutter DC (1994) Analysis of electrical equivalent-circuit of quartz-crystal resonator loaded with viscous conductive liquids. J Electroanal Chem 379(1–2):21–33

    Google Scholar 

  86. Shana ZA, Josse F (1994) Quartz-crystal resonators as sensors in liquids using the acoustoelectric effect. Anal Chem 66(13):1955–1964

    CAS  Google Scholar 

  87. Zhang C, Vetelino JF (2003) Chemical sensors based on electrically sensitive quartz resonators. Sens Actuators B Chem 91(1–3):320–325

    CAS  Google Scholar 

  88. Peschel A, Boettcher A, Langhoff A, Johannsmann D (2016) Probing the electrical impedance of thin films on a quartz crystal microbalance (QCM), making use of frequency shifts and piezoelectric stiffening. Rev Sci Instrum 87:115002

    PubMed  Google Scholar 

  89. Vidarsson H, Hyllner J, Sartipy P (2010) Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications. Stem Cell Rev Rep 6(1):108–120

    PubMed  Google Scholar 

  90. Pax M, Rieger J, Eibl RH, Thielemann C, Johannsmann D (2005) Measurements of fast fluctuations of viscoelastic properties with the quartz crystal microbalance. Analyst 130(11):1474–1477

    CAS  PubMed  Google Scholar 

  91. Tymchenko N, Kunze A, Dahlenborg K, Svedhem S, Steel D (2013) Acoustical sensing of cardiomyocyte cluster beating. Biochem Biophys Res Commun 435(4):520–525

    CAS  PubMed  Google Scholar 

  92. Sapper A, Wegener J, Janshoff A (2006) Cell motility probed by noise analysis of thickness shear mode resonators. Anal Chem 78(14):5184–5191

    CAS  PubMed  Google Scholar 

  93. Gutman J, Walker SL, Freger V, Herzberg M (2013) Bacterial attachment and viscoelasticity: physicochemical and motility effects analyzed using quartz crystal microbalance with dissipation (QCM-D). Environ Sci Technol 47(1):398–404

    CAS  PubMed  Google Scholar 

  94. Wargenau A, Tufenkji N (2014) Direct detection of the gel-fluid phase transition of a single supported phospholipid bilayer using quartz crystal microbalance with dissipation monitoring. Anal Chem 86(16):8017–8020

    CAS  PubMed  Google Scholar 

  95. Losada-Perez P, Khorshid M, Yongabi D, Wagner P (2015) Effect of cholesterol on the phase behavior of solid-supported lipid vesicle layers. J Phys Chem B 119(15):4985–4992

    CAS  PubMed  Google Scholar 

  96. Domack A, Prucker O, Ruhe J, Johannsmann D (1997) Swelling of a polymer brush probed with a quartz crystal resonator. Phys Rev E 56(1):680–689

    CAS  Google Scholar 

  97. Edvardsson M, Svedhem S, Wang G, Richter R, Rodahl M, Kasemo B (2009) QCM-D and reflectometry instrument: applications to supported lipid structures and their biomolecular interactions. Anal Chem 81(1):349–361

    CAS  PubMed  Google Scholar 

  98. Laschitsch A, Menges B, Johannsmann D (2000) Simultaneous determination of optical and acoustic thicknesses of protein layers using surface plasmon resonance spectroscopy and quartz crystal microweighing. Appl Phys Lett 77(14):2252–2254

    CAS  Google Scholar 

  99. Babauta JT, Beasley CA, Beyenal H (2014) Investigation of electron transfer by geobacter sulfurreducens biofilms by using an electrochemical quartz crystal microbalance. ChemElectroChem 1(11):2007–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu Y, Berna A, Climent V, Miguel Feliu J (2014) Real-time monitoring of electrochemically active biofilm developing behavior on bioanode by using EQCM and ATR/FTIR. Sens Actuators B Chem 209:781–789

    Google Scholar 

  101. Rabaey K, Angenent L, Schroder U (eds) (2009) Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. IWA Publishing, London

    Google Scholar 

  102. ITO coated resonator crystals are available from microvacuum: http://www.microvacuum.com/

  103. Giaever I, Keese CR (1991) Micromotion of mammalian-cells measured electrically. Proc Natl Acad Sci U S A 88(17):7896–7900

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author has enjoyed a long-standing collaboration with Ilya Reviakine on the application of the QCM to biosystems, which has influenced this chapter in many ways. Astrid Peschel provided the data shown in Fig. 8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Johannsmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johannsmann, D. (2018). On the Use of the Quartz Crystal Microbalance for Whole-Cell-Based Biosensing. In: Wegener, J. (eds) Label-Free Monitoring of Cells in vitro. Bioanalytical Reviews, vol 2. Springer, Cham. https://doi.org/10.1007/11663_2018_4

Download citation

Publish with us

Policies and ethics