Skip to main content

Optical Waveguide-Based Cellular Assays

  • Chapter
  • First Online:
Label-Free Monitoring of Cells in vitro

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 2))

Abstract

Optical waveguides have been widely used to develop a range of biosensing platforms. Among them, resonant waveguide grating (RWG) has found broad applications in monitoring cell phenotypic responses in native cells mostly due to its adoption to microtiter plates, the de facto footprint for drug discovery. This chapter first reviews RWG biosensor configurations and reader systems, followed by a discussion about how to apply them to facilitate drug discovery, elucidate receptor biology, and perform single-cell analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bosch ME, Sánchez AJR, Rojas FS, Ojeda CB (2007) Recent development in optical fiber biosensors. Sensors 7(6):797–859

    Article  CAS  PubMed Central  Google Scholar 

  2. Pospíšilová M, Kuncová G, Trögl J (2015) Fiber-optic chemical sensors and fiber-optic biosensors. Sensors 15(10):25208–25259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B 6:209–220

    Article  CAS  Google Scholar 

  4. Vörös J, Ramsden JJ, Csúcs G, Szendrő I, De Paul SM, Textor M, Spencer ND (2002) Optical grating coupler biosensors. Biomaterials 23:3699–3710

    Article  PubMed  Google Scholar 

  5. Cush R, Cronin JM, Stewart WJ, Maule CH, Molloy J, Goddard NJ (1993) The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: principle of operation and associated instrumentation. Biosens Bioelectron 8(7–8):347–354

    Article  CAS  Google Scholar 

  6. Cunningham B, Li P, Lin B, Pepper J (2002) Colorimetric resonant reflection as a direct biochemical assay technique. Sens Actuators B 81:316–328

    Article  CAS  Google Scholar 

  7. Nirsch M, Reuter F, Vörös J (2011) Review of transducer principles for label-free biomolecular interaction analysis. Biosensors 1(3):70–92

    Article  CAS  Google Scholar 

  8. Horvath R, Pedersen HC, Larsen NB (2002) Demonstration of reverse symmetry waveguide sensing in aqueous solutions. Appl Phys Lett 81(12):2166–2168

    Article  CAS  Google Scholar 

  9. Zourob M, Mohr S, Brown BJT, Fielden PR, McDonnell M, Goddard NJ (2003) The development of a metal clad leaky waveguide sensor for the detection of particles. Sens Actuators B 90(1–3):296–307

    Article  CAS  Google Scholar 

  10. Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y (2008) Sensitive optical biosensors for unlabeled targets: a review. Anal Chim Acta 620(1):8–26

    Article  CAS  PubMed  Google Scholar 

  11. Li SY, Ramsden JJ, Prenosil JE, Heinzle E (1994) Measurement of adhesion and spreading kinetics of baby hamster kidney and hybridoma cells using an integrated optical method. Biotechnol Prog 10(5):520–524

    Article  CAS  PubMed  Google Scholar 

  12. Ramsden JJ, Horvath R (2009) Optical biosensors for cell adhesion. J Recept Signal Transduct Res 29(1–2):211–223

    Article  CAS  PubMed  Google Scholar 

  13. Orgovan N, Peter B, Bősze S, Ramsden JJ, Szabó B, Horvath R (2014) Dependence of cancer cell adhesion kinetics on integrin ligand surface density measured by a high-throughput label-free resonant waveguide grating biosensor. Sci Rep 4:4034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Fang Y (2010) Label-free and non-invasive biosensor cellular assays for cell adhesion. J Adhes Sci Technol 24:1011–1021

    Article  CAS  Google Scholar 

  15. Hug TS, Prenosil JE, Maier P, Morbidelli M (2002) Optical waveguide lightmode spectroscopy (OWLS) to monitor cell proliferation quantitatively. Biotechnol Bioeng 80(2):213–221

    Article  CAS  PubMed  Google Scholar 

  16. Hug TS (2004) Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assay Drug Dev Technol 1(3):479–488

    Article  Google Scholar 

  17. Fang Y, Ferrie AM, Fontaine NH, Yuen PK (2005) Optical biosensors for monitoring dynamic mass redistribution in living cells mediated by epidermal growth factor receptor activation. Conf Proc IEEE Eng Med Biol Soc 1:666–669

    Google Scholar 

  18. Fang Y, Li G, Peng J (2005) Optical biosensor provides insights for bradykinin B2 receptor signaling in A431 cells. FEBS Lett 579:6365–6374

    Article  CAS  PubMed  Google Scholar 

  19. Fang Y, Ferrie AM, Fontaine NH, Yuen PK (2005) Characteristics of dynamic mass redistribution of EGF receptor signaling in living cells measured with label free optical biosensors. Anal Chem 77:5720–5725

    Article  CAS  PubMed  Google Scholar 

  20. Fang Y, Ferrie AM, Fontaine NH, Mauro J, Balakrishnan J (2006) Resonant waveguide grating biosensor for living cell sensing. Biophys J 91:1925–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fang Y (2010) Label-free receptor assays. Drug Discov Today Technol 7:e5–e11

    Article  CAS  Google Scholar 

  22. Fang Y (2006) Label-free cell-based assays with optical biosensors in drug discovery. Assay Drug Dev Technol 4:583–595

    Article  CAS  PubMed  Google Scholar 

  23. Fang Y, Frutos AG, Verklereen R (2008) Label-free cell assays for GPCR screening. Comb Chem High Throughput Screen 11:357–369

    Article  CAS  PubMed  Google Scholar 

  24. Scott CW, Peters MF (2010) Label-free whole-cell assays: expanding the scope of GPCR screening. Drug Discov Today 15(17–18):704–716

    Article  CAS  PubMed  Google Scholar 

  25. Fang Y (2011) The development of label-free cellular assays for drug discovery. Expert Opin Drug Discovery 6:1285–1298

    Article  CAS  Google Scholar 

  26. Fang Y (2012) Ligand-receptor interaction platforms and their applications for drug discovery. Expert Opin Drug Discovery 7:969–988

    Article  CAS  Google Scholar 

  27. Rocheville M, Martin J, Jerman J, Kostenis E (2013) Mining the potential of label-free biosensors for seven-transmembrane receptor drug discovery. Prog Mol Biol Transl Sci 115:123–142

    Article  CAS  PubMed  Google Scholar 

  28. Fang Y (2014) Label-free cell phenotypic drug discovery. Comb Chem High Throughput Screen 17(7):566–578

    Article  CAS  PubMed  Google Scholar 

  29. Fang Y (2014) Label-free drug discovery. Front Pharmacol 5:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Grundmann M, Kostenis E (2015) Label-free biosensor assays in GPCR screening. Methods Mol Biol 1272:199–213

    Article  CAS  PubMed  Google Scholar 

  31. Li G, Ferrie AM, Fang Y (2006) Label-free profiling of endogenous G-protein-coupled receptors using a cell-based high throughput screening technology. J Assoc Lab Autom 11:181–187

    Article  CAS  Google Scholar 

  32. Tran E, Fang Y (2008) Duplexed label-free G-protein-coupled receptor assays for high throughput screening. J Biomol Screen 13:975–985

    Article  CAS  PubMed  Google Scholar 

  33. Dodgson K, Gedge L, Murray DC, Coldwell M (2009) A 100 K well screen for a muscarinic receptor using the Epic® label-free system – a reflection on the benefits of the label-free approach to screening seven-transmembrane receptors. J Recept Signal Transduct 29(3–4):163–172

    Article  CAS  Google Scholar 

  34. Gitschier HJ, Bergerone AB, Randle DH, Bacon CE, Baez M, Yang P, Broad LM, Goldsmith PJ, Felder CC, Schober DA (2015) Triple-addition label-free assays for high-throughput screening of muscarinic M1 receptor agonists, antagonists, and allosteric modulators. Methods Pharmacol Toxicol 53:197–214

    Article  Google Scholar 

  35. Orgovana N, Kovacs B, Farkas E, Szabó B, Zaytseva N, Fang Y, Horvath R (2014) Bulk and surface sensitivity of a resonant waveguide grating imager. Appl Phys Lett 104:083506

    Article  CAS  Google Scholar 

  36. Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label free detection down to single molecules. Nat Methods 5:591–596

    Article  CAS  PubMed  Google Scholar 

  37. Pal S, Fauchet PM, Miller BL (2012) 1-D and 2-D photonic crystals as optical methods for amplifying biomolecular recognition. Anal Chem 84(21):8900–8908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang Y (2007) Non-invasive optical biosensor for probing cell signaling. Sensors 7:2316–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fang Y (2015) Resonant waveguide grating imagers for single cell analysis and high throughput screening. Proc SPIE 9550:95500P

    Article  Google Scholar 

  40. Sun X, Shu X, Chen C (2015) Grating surface plasmon resonance sensor: angular sensitivity, metal oxidization effect of Al-based device in optimal structure. Appl Optics 54(6):1548–1554

    Article  CAS  Google Scholar 

  41. Konradi R, Textor M, Reimhult E (2012) Using complementary acoustic and optical techniques for quantitative monitoring of biomolecular adsorption at interfaces. Biosensors 2(4):341–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cunningham BT, Li P, Schulz S, Lin B, Baird C, Gerstenmaier J, Genick C, Wang F, Fine E, Laing L (2004) Label-free assays on the BIND system. J Biomol Screen 9(6):481–490

    Article  CAS  PubMed  Google Scholar 

  43. Li P, Lin B, Gerstenmaier J, Cunningham BT (2004) A new method for label-free imaging of biomolecular interactions. Sens Actuators B 99(1):6–13

    Article  CAS  Google Scholar 

  44. Fang Y, Fang J, Tran E, Xie X, Hallstrom M, Frutos AG (2009) High-throughput analysis of biomolecular interactions and cellular responses with resonant waveguide grating biosensors. In: Cooper MA (ed) Label-free biosensors: techniques and applications. Cambridge University Press, New York, pp 206–222

    Chapter  Google Scholar 

  45. Ferrie AM, Wu Q, Fang Y (2010) Resonant waveguide grating imager for live cell sensing. Appl Phys Lett 97:223704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Block ID, Mathias PC, Ganesh N, Jones ID, Dorvel BR, Chaudhery V, Vodkin L, Bashir R, Cunningham BT (2009) A detection instrument for enhanced fluorescence and label-free imaging on photonic crystal surfaces. Opt Express 17:13222–13235

    Article  CAS  PubMed  Google Scholar 

  47. Block ID, Mathias PC, Jones SI, Vodkin LO, Cunningham BT (2009) Optimizing the spatial resolution of photonic crystal label-free imaging. Appl Optics 48:6567–6574

    Article  CAS  Google Scholar 

  48. Choi CJ, Belobraydich AR, Chan LL, Mathias PC, Cunningham BT (2010) Comparison of label-free biosensing in microplate, microfluidic, and spot-based affinity capture assays. Anal Biochem 405(1):1–10

    Article  CAS  PubMed  Google Scholar 

  49. Chen WL, Long KD, Lu M, Chaudhery V, Yu H, Choi JS, Polans J, Zhuo Y, Harley BAC, Cunningham BT (2013) Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst 138:5886–5894

    Article  CAS  PubMed  Google Scholar 

  50. Ferrie AM, Deichmann OD, Wu Q, Fang Y (2012) High resolution resonant waveguide grating imager for cell cluster analysis under physiological condition. Appl Phys Lett 100:223701

    Article  CAS  Google Scholar 

  51. Ferrie AM, Wu Q, Deichmann O, Fang Y (2014) High frequency resonant waveguide grating imager for assessing drug-induced cardiotoxicity. Appl Phys Lett 104:183702

    Article  CAS  Google Scholar 

  52. Orgovan N, Patko D, Hos C, Kurunczi S, Szabó B, Ramsden JJ, Horvath R (2014) Sample handling in surface sensitive chemical and biological sensing: a practical review of basic fluidics and analyte transport. Adv Colloid Interface Sci 211:1–16

    Article  CAS  PubMed  Google Scholar 

  53. Fang Y (2013) Microfluidic biosensor systems for cell biology and drug discovery. In: Panzarella S, Maroni W (eds) Microfluidics: control, manipulation and behavioral applications. Nova, New York, pp 51–78

    Google Scholar 

  54. Choi CJ, Cunningham BT (2007) A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis. Lab Chip 7:550–556

    Article  CAS  PubMed  Google Scholar 

  55. Goral V, Wu Q, Sun H, Fang Y (2011) Label-free optical biosensor with microfluidics for sensing ligand-directed functional selectivity on trafficking of thrombin receptor. FEBS Lett 585:1054–1060

    Article  CAS  PubMed  Google Scholar 

  56. Goral V, Jin Y, Sun H, Ferrie AM, Wu Q, Fang Y (2011) Agonist-directed desensitization of the β2-adrenergic receptor. PLoS One 6:e19282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zaytseva N, Miller W, Goral V, Hepburn J, Fang Y (2011) Microfluidic resonant waveguide grating biosensor system for whole cell sensing. Appl Phys Lett 96:163703

    Article  CAS  Google Scholar 

  58. Fang Y (2011) Label-free biosensors for cell biology. Intl J Electrochem 2011:e460850

    Article  CAS  Google Scholar 

  59. Zaytseva Z, Lynn JG, Wu Q, Mudaliar DJ, Kuang PQ, Fang Y (2013) Resonant waveguide grating biosensor-enabled label-free and fluorescence detection of cell adhesion. Sens Actuators B 188:1064–1072

    Article  CAS  Google Scholar 

  60. Tran E, Sun H, Fang Y (2012) Dynamic mass redistribution assays decodes surface influence on signaling of endogenous purinergic receptors. Assay Drug Dev Technol 10:37–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pattabiraman G, Lidstone EA, Palasiewicz K, Cunningham BT, Ucker DS (2014) Recognition of apoptotic cells by viable cells is specific, ubiquitous, and species independent: analysis using photonic crystal biosensors. Mol Biol Cell 25(11):1704–1714

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pai S, Verrier F, Sun H, Hu H, Ferrie AM, Eshraghi A, Fang Y (2012) Dynamic mass redistribution assay decodes differentiation of a neural progenitor stem cell. J Biomol Screen 17:1180–1191

    Article  PubMed  Google Scholar 

  63. Febles NK, Ferrie AM, Fang Y (2014) Label-free single cell quantification of the invasion of spheroidal colon cancer cells through 3D Matrigel. Anal Chem 86(17):8842–8849

    Article  CAS  PubMed  Google Scholar 

  64. Chandrasekaran S, Deng H, Fang Y (2015) PTEN deletion potentiates invasion of colorectal cancer spheroidal cells through 3D Matrigel. Integr Biol 7(3):324–334

    Article  CAS  Google Scholar 

  65. McCoy MH, Wang E (2005) Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time. J Virol Methods 130(1–2):157–161

    Article  CAS  PubMed  Google Scholar 

  66. Owens RM, Wang CQ, You JA, Jiambutr J, Xu AS, Marala RB, Jin MM (2009) Real-time quantitation of viral replication and inhibitor potency using a label-free optical biosensor. J Recept Signal Transduct 29(3–4):195–201

    Article  CAS  Google Scholar 

  67. Fang Y (2013) Troubleshooting and deconvoluting label-free cell phenotypic assays in drug discovery. J Pharmacol Toxicol Methods 67(1):69–81

    Article  CAS  PubMed  Google Scholar 

  68. Fang Y (2016) Compound annotation with real time cellular activity profiles to improve drug discovery. Expert Opin Drug Discovery 11(3):269–280

    Article  CAS  Google Scholar 

  69. Ferrie AM, Wang C, Deng H, Fang Y (2013) Label-free optical biosensor with microfluidics identifies an intracellular signalling wave mediated through the β2-adrerengic receptor. Integr Biol 5(10):1253–1261

    Article  CAS  Google Scholar 

  70. Fang Y (2015) Label-free cell phenotypic profiling and screening: techniques, experimental design and data assessment. Methods Pharmacol Toxicol 53:233–252

    Google Scholar 

  71. Fang Y (2015) Are label-free investigations the best approach to drug discovery? Future Med Chem 7(12):1561–1564

    Article  CAS  PubMed  Google Scholar 

  72. Folmer RHA (2016) Integrating biophysics with HTS-driven drug discovery projects. Drug Discov Today 21(3):491–498

    Article  CAS  PubMed  Google Scholar 

  73. Wells CA, Betke KM, Lindsley CW, Hamm HE (2012) Label-free detection of G-protein-SNARE interactions and screening for small molecule modulators. ACS Chem Nerosci 3(1):69–78

    Article  CAS  Google Scholar 

  74. Geschwindner S, Carlsson JF, Knecht W (2012) Application of optical biosensors in small-molecule screening activities. Sensors 12(4):4311–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Larsson N, Sundström L, Ryberg E, Frostne L (2013) Cell based label-free assays in GPCR drug discovery. Eur Pharm Rev 18(4):13–16

    Google Scholar 

  76. Lee MY, Mun J, Lee JH, Lee S, Lee BH, Oh K-S (2014) A comparison of assay performance between the calcium mobilization and the dynamic mass redistribution technologies for the human urotensin receptor. Assay Drug Dev Technol 12(6):361–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang X, Deng H, Xiao Y, Xue X, Ferrie AM, Tran E, Liang X, Fang Y (2014) Label-free cell phenotypic profiling identifies pharmacologically active compounds in two traditional Chinese medicinal plants. RSC Adv 4(50):26368–26377

    Article  CAS  Google Scholar 

  78. Malo N, Hanley JA, Cerquozzi S, Pelletier J, Nadon R (2006) Statistical practice in high-throughput screening data analysis. Nat Biotechnol 24(2):167–175

    Article  CAS  PubMed  Google Scholar 

  79. Fang Y (2015) Combining label-free cell phenotypic profiling with computational approaches for novel drug discovery. Expert Opin Drug Discovery 10(4):331–343

    Article  CAS  Google Scholar 

  80. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J Med Chem 45(8):1712–1722

    Article  CAS  PubMed  Google Scholar 

  81. Baell J, Walters MA (2014) Chemistry: chemical con artists foil drug discovery. Nature 513(7519):481–483

    Article  CAS  PubMed  Google Scholar 

  82. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chan LL, Lidstone EA, Finch KE, Heeres JT, Hergenrother PJ, Cunningham BT (2009) A method for identifying small-molecule aggregators using photonic crystal biosensor microplates. JALA Charlottesv Va 14(6):348–359

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Schmidt J, Smith NJ, Christiansen E, Tikhonova IG, Grundmann M, Hudson BD, Ward RJ, Drewke C, Milligan G, Kostenis E, Ulven T (2011) Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: Identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J Biol Chem 286(12):10628–10640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deng H, Hu H, He M, Hu J, Niu W, Ferrie AM, Fang Y (2011) Discovery of 2-(4-methylfuran-2(5H)-ylidene)malononitrile and thieno[3,2-b]thiophene-2-carboxylic acid derivatives as G-protein-coupled receptor-35 (GPR35) agonists. J Med Chem 54:7385–7396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deng H, Hu H, Fang Y (2011) Tyrphostin analogs are GPR35 agonists. FEBS Lett 585:1957–1962

    Article  CAS  PubMed  Google Scholar 

  87. Deng H, Hu H, Fang Y (2012) Multiple tyrosine metabolites are GPR35 agonists. Sci Rep 2:373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Deng H, Fang Y (2012) Synthesis and agonistic activity at the GPR35 of 5,6-dihydroxyindole-2-carboxylic acid analogs. ACS Med Chem Lett 3:550–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Deng H, Hu H, Ling S, Ferrie AM, Fang Y (2012) Discovery of natural phenols as G-protein-coupled receptor-35 (GPR35) agonists. ACS Med Chem Lett 3:165–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deng H, Fang Y (2013) The three catecholics benserazide, catechol and pyrogallol are GPR35 agonists. Pharmaceuticals 6:500–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Deng H, Fang Y (2012) Discovery of nitrophenols as GPR35 agonists. Med Chem Commun 3:1270–1274

    Article  CAS  Google Scholar 

  92. Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Swinney DC (2004) Biochemical mechanisms of drug action: what does it take for success? Nat Rev Drug Discov 3:801–808

    Article  CAS  PubMed  Google Scholar 

  94. Copeland RA, Pompliano DL, Meek TD (2006) Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discov 5:730–739

    Article  CAS  PubMed  Google Scholar 

  95. Fang Y, Ferrie AM (2008) Label-free optical biosensor for ligand-directed functional selectivity acting on β2-adrenoceptor in living cells. FEBS Lett 582:558–564

    Article  CAS  PubMed  Google Scholar 

  96. Ferrie AM, Goral V, Wang C, Fang Y (2015) Label-free functional selectivity assays. Methods Mol Biol 1272:227–246

    Article  CAS  PubMed  Google Scholar 

  97. Brust TF, Hayes MP, Roman DL, Burris KD, Watts VJ (2015) Bias analyses of preclinical and clinical D2 dopamine ligands: studies with immediate and complex signaling pathways. J Pharmacol Exp Ther 352(3):480–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Brust TF, Hayes MP, Roman DL, Watts VJ (2015) New functional activity of aripiprazole revealed: Robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling. Biochem Pharmacol 93(1):85–91

    Article  CAS  PubMed  Google Scholar 

  99. Ferrie AM, Sun H, Fang Y (2011) Label-free integrative pharmacology on-target of drugs at the 2-adrenergic receptor. Sci Rep 1:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Ferrie AM, Sun H, Zaytseva N, Fang Y (2014) Divergent label-free cell phenotypic pharmacology of ligands at the overexpressed β2-adrenergic receptors. Sci Rep 4:3828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Morse M, Tran E, Levension RL, Fang Y (2011) Ligand-directed functional selectivity at the mu opioid receptor revealed by label-free on-target pharmacology. PLoS One 6:e25643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Morse M, Sun H, Tran E, Levenson R, Fang Y (2013) Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family. BMC Pharmacol Toxicol 14:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deng H, Sun H, Fang Y (2013) Label-free cell phenotypic assessment of the biased agonism and efficacy of agonists at the endogenous muscarinic M3 receptors. J Pharmacol Toxicol Methods 68(3):323–333

    Article  CAS  PubMed  Google Scholar 

  104. Guo D, Mulder-Krieger T, IJzerman AP, Heitman LH (2012) Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol 166(6):1846–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Deng H, Wang C, Su M, Fang Y (2012) Probing biochemical mechanisms of action of muscarinic M3 receptor antagonists with label-free whole-cell assays. Anal Chem 84:8232–8239

    Article  CAS  PubMed  Google Scholar 

  106. Deng H, Wang C, Fang Y (2013) Label-free cell phenotypic assessment of the molecular mechanism of action of epidermal growth factor receptor inhibitors. RSC Adv 3:10370–10378

    Article  CAS  Google Scholar 

  107. Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I, Giacomini KM, Krauss RM (2007) Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 6(11):904–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Paolini GV, Shapland RH, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nat Biotechnol 24(7):805–815

    Article  CAS  PubMed  Google Scholar 

  109. Yildirim MA, Goh KI, Cusick ME, Barabási AL, Vidal M (2007) Drug-target network. Nat Biotechnol 25(10):1119–1126

    Article  CAS  PubMed  Google Scholar 

  110. Feng Y, Mitchison TJ, Bender A, Young DW, Tallarico JA (2009) Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat Rev Drug Discov 8(7):567–578

    Article  CAS  PubMed  Google Scholar 

  111. Sun H, Wei Y, Xiong Q, Li M, Lahiri J, Fang Y (2014) Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci Rep 4:4934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schröder R, Janssen N, Schmidt J, Kebig A, Merten N, Hennen S, Müller A, Blättermann S, Mohr-Andrä M, Zahn S, Wenzel J, Smith NJ, Gomeza J, Drewke C, Milligan G, Mohr K, Kostenis E (2010) Deconvolution of complex G-protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nat Biotechnol 28(9):943–949

    Article  PubMed  CAS  Google Scholar 

  113. Schmidt J, Liebscher K, Merten N, Grundmann M, Mielenz M, Sauerwein H, Christiansen E, Due-Hansen ME, Ulven T, Ullrich S, Gomeza J, Drewke C, Kostenis E (2011) Conjugated linoleic acids mediate insulin release through islet G-protein-coupled receptor FFA1/GPR40. J Biol Chem 286(14):11890–11894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schröder R, Schmidt J, Blättermann S, Peters L, Janssen N, Grundmann M, Seemann W, Kaufel D, Merten N, Drewke C, Gomeza J, Milligan G, Mohr K, Kostenis E (2011) Applying label-free dynamic mass redistribution technology to frame signaling of G-protein-coupled receptors noninvasively in living cells. Nat Protoc 6(11):1748–1760

    Article  PubMed  CAS  Google Scholar 

  115. Ahmedat AS, Warnken M, Seemann WK, Mohr K, Kostenis E, Juergens UR, Racké K (2013) Pro-fibrotic processes in human lung fibroblasts are driven by an autocrine/paracrine endothelinergic system. Br J Pharmacol 168(2):471–487

    Article  CAS  PubMed  Google Scholar 

  116. Hennen S, Wang H, Peters L, Merten N, Simon K, Spinrath A, Blättermann S, Akkari R, Schrage R, Schröder R, Schulz D, Vermeiren C, Zimmermann K, Kehraus S, Drewke C, Pfeifer A, König GM, Mohr K, Gillard M, Müller CE, Lu QR, Gomeza J, Kostenis E (2013) Decoding signaling and function of the orphan g protein-coupled receptor GPR17 with a small-molecule agonist. Sci Signal 6(298):ra93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Tilley DG, Repas AA, Carter RL (2015) Label-free profiling of endogenous receptor responses in primary isolated cardiac cells. Methods Pharmacol Toxicol 53:169–182

    Article  Google Scholar 

  118. Ahmed D, Muddana H, Lu M, French J, Ozcelik A, Fang Y, Butler P, Benkovic S, Manz A, Huang TJ (2014) Acoustofluidic chemical waveform generator and switch. Anal Chem 86(23):11803–11810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SG, Sunahara RK, El-Samad H, Huang B, von Zastrow M (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495(7442):534–538

    Article  CAS  PubMed  Google Scholar 

  120. Zhao H, French JB, Fang Y, Benkovic SJ (2013) The purinosome, a multi-protein complex involved in the de novo biosynthesis of purines in humans. Chem Commun 49:4444–4452

    Article  CAS  Google Scholar 

  121. An S, Kumar R, Sheets ED, Benkovic SJ (2008) Reversible compartmentalization of de novo purine biosynthetic complexes in living cells. Science 320:103–106

    Article  CAS  PubMed  Google Scholar 

  122. An S, Kyoung M, Allen JJ, Shokat KM, Benkovic SJ (2010) Dynamic regulation of a metabolic multi-enzyme complex by protein kinase CK2. J Biol Chem 285:11093–11099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Verrier F, An S, Ferrie AM, Sun H, Kyoung M, Fang Y, Benkovic SJ (2011) G-protein-coupled receptor signaling regulates the dynamics of a metabolic multienzyme complex. Nat Chem Biol 7:909–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. French JB, Jones SA, Deng H, Hu H, Pedley AM, Kim D, Chan CY, Hu H, Pugh RJ, Zhao H, Zhang Y, Huang TJ, Fang Y, Zhuang X, Benkovic SJ (2016) Spatial colocalization and functional link of purinosomes with mitochondria. Science 351(6274):733–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fang Y, French J, Zhao H, Benkovic S (2013) G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism. Biotechnol Genet Eng Rev 29(1):31–48

    Article  CAS  PubMed  Google Scholar 

  126. Fang Y (2015) Label-free chemical and phenotypic profiling of living cells. Sci Lett 4:156

    Google Scholar 

  127. Fang Y (2010) Probing cancer signaling with resonant waveguide grating biosensors. Expert Opin Drug Discovery 5:1237–1248

    Article  CAS  Google Scholar 

  128. Chen M, Zaytseva NV, Wu Q, Li M, Fang Y (2013) Microplate-compatible total internal reflection fluorescence microscopy for receptor pharmacology. Appl Phys Lett 102:193702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Fang Y (2015) Total internal reflection fluorescence quantification of receptor pharmacology. Biosensors 5:223–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Michaelis S, Wegener J, Robelek R (2013) Label-free monitoring of cell-based assays: combining impedance analysis with SPR for multiparametric cell profiling. Biosens Bioelectron 49:63–70

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fang, Y. (2018). Optical Waveguide-Based Cellular Assays. In: Wegener, J. (eds) Label-Free Monitoring of Cells in vitro. Bioanalytical Reviews, vol 2. Springer, Cham. https://doi.org/10.1007/11663_2018_3

Download citation

Publish with us

Policies and ethics