Skip to main content

Recent Advances in the Study of Electrochemistry of Redox Proteins

  • Chapter
  • First Online:
Book cover Trends in Bioelectroanalysis

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 6))

Abstract

Redox proteins constitute a diverse class of proteins that facilitate the chemical and biological processes which are otherwise thermodynamically challenging. Efficient catalysis, diversity of biotransformation, potent redox centres and fast electron transport kinetics make these redox proteins an interesting target for electrochemical investigation for both theoretical and practical implications. The first and foremost requirement for electrochemical studies of redox proteins is to create an environment where they could interact with the electrodes either directly or via electron transport mediators. The last few years have seen a tremendous development in this field ranging from the increase in diversity of redox proteins that could possibly be studied electrochemically to their efficient immobilisation in a variety of matrices especially nanomatrices. Major advances have also been made in the area of characterisation of fabricated bioelectrodes by using different spectroscopic and microscopic techniques supplementing the electrochemical findings. This chapter will focus mainly on the aforementioned recent developments in the field of electrochemical studies of redox proteins and their applications for studies of redox mechanism or as biosensors or biofuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACNTs:

Aligned carbon nanotubes

AFM:

Atomic force microscopy

ArO:

Arsenite oxidase

AuNPs/NWs:

Gold nanoparticles/nanowires

Az:

Azurin

CAT:

Large catalase

cbo3:

Cytochrome bo3

CcO:

Cytochrome c oxidase

ChOx:

Cholesterol oxidase

CV:

Cyclic voltammetry

CYP:

Cytochrome P450

cyt c:

Cytochrome c

D/ET:

Direct/electron transfer

DDAB:

Didodecyldimethylammonium bromide

EFCs:

Enzymatic fuel cells

EIS:

Electrochemical impedance spectroscopy

FAD:

Flavin adenine dinucleotide

FT/IR:

Fourier transform/infrared

GCE:

Glassy carbon electrode

GOx:

Glucose oxidase

Hb:

Haemoglobin

HRTEM:

High-resolution transmission electron microscopy

hSO:

Human sulphite oxidase

k s/k ET :

Electron transfer rate constant

M/SWCNTs:

Multi/single-walled carbon nanotubes

MP-11:

Microperoxidase-11

MW:

Molecular weight

NADH:

Nicotinamide adenine dinucleotide

NapAB:

Nitrate reductase

NF:

Nafion®

PANI-NTs:

Polyaniline nanotubes

PEI:

Polyethyleneimine

PFV:

Protein film voltammetry

PGE:

Pyrolytic graphite edge

QCM:

Quartz crystal microbalance

R ct :

Charge transfer resistance

SAM:

Self-assembled monolayer

SCE:

Saturated calomel electrode

SEM:

Scanning electron microscopy

SHE:

Standard hydrogen electrode

SPR:

Surface plasmon resonance

tBLMs:

Tethered bilayer membranes

References

  1. Nelson DL, Cox MM (2008) Oxidative phosphorylation and photophosphorylation. In: Lehninger principles of biochemistry, 5th edn. W. H. Freeman, New York

    Google Scholar 

  2. Gamenara D, Seoane G, Méndez PS, Domínguez de María P (2012) Redox biocatalysis: fundamentals and applications. Wiley, Hoboken

    Book  Google Scholar 

  3. Messerschmidt A, Bode W, Cygler M (eds) (2004) Handbook of metalloproteins. Wiley, Chichester

    Google Scholar 

  4. Léger C, Bertrand P (2008) Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem Rev 108:2379–2438

    Article  Google Scholar 

  5. Newman JD, Setford SJ (2006) Enzymatic biosensors. Mol Biotechnol 32:249–268

    Article  CAS  Google Scholar 

  6. Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108:2439–2461

    Article  CAS  Google Scholar 

  7. Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18:228–234

    Article  CAS  Google Scholar 

  8. Bowden EF, Hawkridge FM, Blount HN (1985) Electrochemical aspects of bioenergetics. In: Srinivasan S, Chizmadzhev YA, Bockris JOM, Conway BE, Yeager E (eds) Comprehensive treatise of electrochemistry, vol 10. Plenum, New York, pp 297–346

    Chapter  Google Scholar 

  9. Armstrong FA (1990) Probing metalloproteins by voltammetry. In: Bioinorganic chemistry, vol 72, Structure and bonding. Springer, Berlin, pp 137–221

    Chapter  Google Scholar 

  10. Sarma AK, Vatsyayan P, Goswami P, Minteer SD (2009) Recent advances in material science for developing enzyme electrodes. Biosens Bioelectron 24:2313–2322

    Article  CAS  Google Scholar 

  11. Prabhulkar S, Tian H, Wang X, Zhu J-J, Li C-Z (2012) Engineered proteins: redox properties and their applications. Antioxid Redox Signal 17:1796–1822

    Article  CAS  Google Scholar 

  12. Hill HAO, Moore CB, NabiRahni DMA (1997) Electrochemistry of redox proteins. In: Lenaz G, Milazzot G (eds) Bioelectrochemistry of biomacromolecules. Birkhauser, Basel

    Google Scholar 

  13. Armstrong FA, Wilson GS (2000) Recent developments in faradaic bioelectrochemistry. Electrochim Acta 45:2623–2645

    Article  CAS  Google Scholar 

  14. Habermüller K, Mosbach M, Schumann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366:560–568

    Article  Google Scholar 

  15. Ferapontova EE, Shleev S, Ruzgas T, Stoica L, Christenson A, Tkac J, Yaropolov AI, Gorton L (2005) Direct electrochemistry of proteins and enzymes. Perspectives in bioanalysis 1:517–598

    Google Scholar 

  16. Rusling JF, Wang B, Yun S (2008) Electrochemistry of redox enzymes. In: Bartlett PN (ed) Bioelectrochemistry, fundamentals, experimental techniques and applications. Wiley, Hoboken

    Google Scholar 

  17. Willner I, Katz E (eds) (2005) Bioelectronics from theory to applications. Wiley, Weinheim

    Google Scholar 

  18. Zhang W, Li G (2004) Third-generation biosensors based on the direct electron transfer of proteins. Anal Sci 20:603–609

    Article  CAS  Google Scholar 

  19. Roger M, de Poulpiquet A, Ciaccafava A, Ilbert M, Guiral M, Giudici-Orticoni MT, Lojou E (2014) Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production. Anal Bioanal Chem 406:1011–1027

    Article  CAS  Google Scholar 

  20. Léger C (2012) Direct electrochemistry of proteins and enzymes: an introduction

    Google Scholar 

  21. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  22. Lisdat F, Schäfer D (2008) The use of electrochemical impedance spectroscopy for biosensing. Anal Bioanal Chem 391:1555–1567

    Article  CAS  Google Scholar 

  23. Szamocki R, Velichko A, Mücklich F, Reculusa S, Ravaine S, Neugebauer S, Schuhmann W, Hempelmann R, Kuhn A (2007) Improved enzyme immobilization for enhanced bioelectrocatalytic activity of porous electrodes. Electrochem Commun 9:2121–2127

    Article  CAS  Google Scholar 

  24. Patolsky F, Weizmann Y, Willner I (2004) Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew Chem Int Ed 43:2113–2117

    Article  CAS  Google Scholar 

  25. Yang J, Xu Y, Zhang R, Wang Y, He P, Fang Y (2009) Direct electrochemistry and electrocatalysis of the hemoglobin immobilized on diazonium-functionalized aligned carbon nanotubes electrode. Electroanalysis 21:1672–1677

    Article  CAS  Google Scholar 

  26. Udit AK, Hagen KD, Goldman PJ, Star A, Gillan JM, Gray HB, Hill MG (2006) Spectroscopy and electrochemistry of cytochrome p450 BM3-surfactant film assemblies. J Am Chem Soc 128:10320–10325

    Article  CAS  Google Scholar 

  27. Hagen KD, Gillan JM, Im S-C, Landefeld S, Mead G, Hiley M, Waskell LA, Hill MG, Udit AK (2013) Electrochemistry of mammalian cytochrome P450 2B4 indicates tunable thermodynamic parameters in surfactant films. J Inorg Biochem 129:30–34

    Article  CAS  Google Scholar 

  28. Lioubashevski O, Chegel VI, Patolsky F, Katz E, Willner I (2004) Enzyme-catalyzed bio-pumping of electrons into Au-nanoparticles: a surface plasmon resonance and electrochemical study. J Am Chem Soc 126:7133–7143

    Article  CAS  Google Scholar 

  29. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 40:1451–1463

    Article  CAS  Google Scholar 

  30. Kotyk A, Janacek K, Koryta J (1988) Biophysical chemistry of membrane function. Wiley, Chichester

    Google Scholar 

  31. Jeuken LJC (2009) Electrodes for integral membrane enzymes. Nat Prod Rep 26:1234–1240

    Article  CAS  Google Scholar 

  32. Melin F, Hellwig P (2013) Recent advances in the electrochemistry and spectroelectrochemistry of membrane proteins. Biol Chem 394:593–609

    Article  CAS  Google Scholar 

  33. Rusling JF (1998) Enzyme bioelectrochemistry in cast biomembrane-like films. Acc Chem Res 31:363–369

    Article  CAS  Google Scholar 

  34. Khan MS, Dosoky NS, Williams JD (2013) Engineering lipid bilayer membranes for protein studies. Int J Mol Sci 14:21561–21597

    Article  Google Scholar 

  35. Jeuken LJC, Connell SD, Henderson PJF, Gennis RB, Evans SD, Bushby RJ (2006) Redox enzymes in tethered membranes. J Am Chem Soc 128:1711–1716

    Article  CAS  Google Scholar 

  36. Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  Google Scholar 

  37. Udit AK, Gray HB (2005) Electrochemistry of heme-thiolate proteins. Biochem Biophys Res Commun 338:470–476

    Article  CAS  Google Scholar 

  38. Walcarius A, Kuhn A (2008) Ordered porous thin films in electrochemical analysis. Trends Anal Chem 27:593–603

    Article  CAS  Google Scholar 

  39. Szamocki R, Reculusa S, Ravaine S, Bartlett PN, Kuhn A, Hempelmann R (2006) Tailored mesostructuring and biofunctionalization of gold for increased electroactivity. Angew Chem Int Ed Engl 45:1317–1321

    Article  CAS  Google Scholar 

  40. Wang CH, Yang C, Song YY, Gao W, Xia XH (2005) Adsorption and direct electron transfer from hemoglobin into a three-dimensionally ordered macroporous gold film. Adv Funct Mater 15:1267–1275

    Article  CAS  Google Scholar 

  41. Rusling JF, Forster RJ (2003) Electrochemical catalysis with redox polymer and polyion–protein films. J Colloid Interface Sci 262:1–15

    Article  CAS  Google Scholar 

  42. Vatsyayan P, Bordoloi S, Goswami P (2010) Large catalase based bioelectrode for biosensor application. Biophys Chem 153:36–42

    Article  CAS  Google Scholar 

  43. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  44. Henstridge MC, Laborda E, Rees NV, Compton RG (2012) Marcus–Hush–Chidsey theory of electron transfer applied to voltammetry: a review. Electrochim Acta 84:12–20

    Article  CAS  Google Scholar 

  45. Plumeré N, Rüdiger O, Oughli AA, Williams R, Vivekananthan J, Pöller S, Schuhmann W, Lubitz W (2014) A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat Chem 6:822–827

    Article  Google Scholar 

  46. Malhotra BD, Chaubey A, Singh SP (2006) Prospects of conducting polymers in biosensors. Anal Chim Acta 578:59–74

    Article  CAS  Google Scholar 

  47. Ahuja T, Mir IA, Kumar D, Rajesh (2007) Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 28:791–805

    Google Scholar 

  48. Rahman MA, Kumar P, Park D-S, Shim Y-B (2008) Electrochemical sensors based on organic conjugated polymers. Sensors 8:118–141

    Article  CAS  Google Scholar 

  49. Willner B, Katz E, Willner I (2006) Electrical contacting of redox proteins by nanotechnological means. Curr Opin Biotechnol 17:589–596

    Article  CAS  Google Scholar 

  50. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881

    Article  CAS  Google Scholar 

  51. Campàs M, Prieto-Simón B, Marty J-L (2009) A review of the use of genetically engineered enzymes in electrochemical biosensors. Semin Cell Dev Biol 20:3–9

    Article  Google Scholar 

  52. Sadeghi SJ, Meharenna YT, Fantuzzi A, Valetti F, Gilardi G (2000) Engineering artificial redox chains by molecular “lego”. Faraday Discuss 116:135–153

    Article  CAS  Google Scholar 

  53. Wong TS, Schwaneberg U (2003) Protein engineering in bioelectrocatalysis. Curr Opin Biotechnol 14:590–596

    Article  CAS  Google Scholar 

  54. Marshall NM, Garner DK, Wilson TD, Gao Y-G, Robinson H, Nilges MJ, Lu Y (2009) Rationally tuning the reduction potential of a single cupredoxin beyond the natural range. Nature 462:113–117

    Article  CAS  Google Scholar 

  55. Kumar S, Chen CS, Waxman DJ, Halpert JR (2005) Directed evolution of mammalian cytochrome P450 2B1, mutations outside of the active site enhance the metabolism of several substrates, including the anticancer prodrugs cyclophosphamide and ifosfamide. J Biol Chem 280:19569–19575

    Article  CAS  Google Scholar 

  56. Axarli I, Prigipaki A, Labrou NE (2005) Engineering the substrate specificity of cytochrome P450 CYP102A2 by directed evolution: production of an efficient enzyme for bioconversion of fine chemicals. Biomol Eng 22:81–88

    Article  CAS  Google Scholar 

  57. Sarauli D, Riedel M, Wettstein C, Hahn R, Stib K, Wollenberger U, Leimkühler S, Schmuki P, Lisdat F (2012) Semimetallic TiO2 nanotubes: new interfaces for bioelectrochemical enzymatic catalysis. J Mater Chem 22:4615–4618

    Article  CAS  Google Scholar 

  58. Pradhan D, Niroui F, Leung KT (2010) High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl Mater Interfaces 2:2409–2412

    Article  CAS  Google Scholar 

  59. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Nanowire-based electrochemical biosensors. Electroanalysis 18:533–550

    Article  CAS  Google Scholar 

  60. Kumar AM, Jung S, Ji T (2011) Protein biosensors based on polymer nanowires, carbon nanotubes and zinc oxide nanorods. Sensors 11:5087–5111

    Article  Google Scholar 

  61. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105–127

    Article  CAS  Google Scholar 

  62. Esplandiu MJ, Pacios M, Cyganek L, Bartroli J, del Valle M (2009) Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes. Nanotechnology 20:355502

    Article  CAS  Google Scholar 

  63. Cusmà A, Curulli A, Zane D, Kaciulis S, Padeletti G (2007) Feasibility of enzyme biosensors based on gold nanowires. Mater Sci Eng C 27:1158–1161

    Article  Google Scholar 

  64. Dawson K, Baudequin M, O’Riordan A (2011) Single on-chip gold nanowires for electrochemical biosensing of glucose. Analyst 136:4507–4513

    Article  CAS  Google Scholar 

  65. Mayorga-Martinez CC, Guix M, Madrid RE, Merkoci A (2012) Bimetallic nanowires as electrocatalysts for nonenzymatic real-time impedancimetric detection of glucose. Chem Commun 48:1686–1688

    Article  CAS  Google Scholar 

  66. Travas-Sejdic J, Aydemir N, Kannan B, Williams DE, Malmström J (2014) Intrinsically conducting polymer nanowires for biosensing. J Mater Chem B 2:4593–4609

    Article  CAS  Google Scholar 

  67. Wang Z, Liu S, Wu P, Cai C (2009) Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal Chem 81:1638–1645

    Article  CAS  Google Scholar 

  68. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866

    Article  CAS  Google Scholar 

  69. Melin F, Meyer T, Lankiang S, Choi SK, Gennis RB, Blanck C, Schmutz M, Hellwig P (2013) Direct electrochemistry of cytochrome bo3 oxidase at a series of gold nanoparticles-modified electrodes. Electrochem Commun 26:105–108

    Article  CAS  Google Scholar 

  70. Yu D, Renedo OD, Blankert B, Sima V, Sandulescu R, Arcos J, Kauffmann J-M (2006) A peroxidase-based biosensor supported by nanoporous magnetic silica microparticles for acetaminophen biotransformation and inhibition studies. Electroanalysis 18:1637–1642

    Article  CAS  Google Scholar 

  71. Nowicka AM, Kowalczyk A, Donten ML, Donten M, Bystrzejewski M, Stojek Z (2014) Carbon-encapsulated iron nanoparticles as ferromagnetic matrix for oxygen reduction in absence and presence of immobilized laccase. Electrochim Acta 126:115–121

    Article  CAS  Google Scholar 

  72. Kainz QM, Fernandes S, Eichenseer CM, Besostri F, Koerner H, Mueller R, Reiser O (2014) Synthesis of functionalized, dispersible carbon-coated cobalt nanoparticles for potential biomedical applications. Faraday Discuss 175:27–40

    Article  CAS  Google Scholar 

  73. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2011) Recent advances in graphene-based biosensors. Biosens Bioelectron 26:4637–4648

    Article  CAS  Google Scholar 

  74. Armstrong FA (2005) Recent developments in dynamic electrochemical studies of adsorbed enzymes and their active sites. Curr Opin Chem Biol 9:110–117

    Article  CAS  Google Scholar 

  75. Honeychurch M, The direct electrochemistry of cytochrome P450. What are we actually measuring? m.honeychurch@uq.edu.au

    Google Scholar 

  76. Fourmond V, Sabaty M, Arnoux P, Bertrand P, Pignol D, Leger C (2010) Reassessing the strategies for trapping catalytic intermediates during nitrate reductase turnover. J Phys Chem B 114:3341–3347

    Article  CAS  Google Scholar 

  77. Leroux F, Dementin S, Burlat B, Cournac L, Volbeda A, Champ S, Martin L, Guigliarelli B, Bertrand P, Fontecilla-Camps J, Rousset M (2008) Experimental approaches to kinetics of gas diffusion in hydrogenase. Proc Natl Acad Sci U S A 105:11188–11193

    Article  CAS  Google Scholar 

  78. Almeida MG, Silveira CM, Guigliarelli B, Bertrand P, Moura JJG, Moura I, Leger C (2007) A needle in a haystack: the active site of the membrane-bound complex cytochrome c nitrite reductase. FEBS Lett 581:284–288

    Article  CAS  Google Scholar 

  79. Lautier T, Ezanno P, Baffert C, Fourmond V, Cournac L, Fontecilla-Camps JC, Soucaille P, Bertrand P, Meynial-Salles I, Leger C (2011) The quest for a functional substrate access tunnel in FeFe hydrogenase. Faraday Discuss 148:385–407

    Article  CAS  Google Scholar 

  80. Liebgott P-P, Leroux F, Burlat B, Dementin S, Baffert C, Lautier T, Fourmond V, Ceccaldi P, Cavazza C, Meynial-Salles I, Soucaille P, Fontecilla-Camps JC, Guigliarelli B, Bertrand P, Rousset M, Léger C (2010) Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nat Chem Biol 6:63–70

    Article  CAS  Google Scholar 

  81. Rodriguez-Mozaz S, Lopez de Alda MJ, Marco MP, Barcelo D (2005) Biosensors for environmental monitoring A global perspective. Talanta 65:291–297

    CAS  Google Scholar 

  82. Grieshaber D, MacKenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors – sensor principles and architectures. Sensors 8:1400–1458

    Article  CAS  Google Scholar 

  83. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763

    Article  CAS  Google Scholar 

  84. Yoo E-H, Lee S-Y (2010) Glucose biosensors: an overview of use in clinical practice. Sensors 10:4558–4576

    Article  Google Scholar 

  85. Vaddirajua S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulosa F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 25:1553–1565

    Article  Google Scholar 

  86. Sassolas A, Prieto-Simón B, Marty J-L (2012) Biosensors for pesticide detection: new trends. Am J Anal Chem 3:210–232

    Article  CAS  Google Scholar 

  87. Arya SK, Datta M, Malhotra BD (2008) Recent advances in cholesterol biosensor. Biosens Bioelectron 23:1083–1100

    Article  CAS  Google Scholar 

  88. Saxena U, Chakraborty M, Goswami P (2011) Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples. Biosens Bioelectron 26:3037–3043

    Article  CAS  Google Scholar 

  89. Saxena U, Das AB (2016) Nanomaterials towards fabrication of cholesterol biosensors: key roles and design approaches. Biosens Bioelectron 75:196–205

    Article  CAS  Google Scholar 

  90. Male KB, Hrapovic S, Santini JM, Luong JHT (2007) Biosensor for arsenite using arsenite oxidase and multiwalled carbon nanotube modified electrodes. Anal Chem 79:7831–7837

    Article  CAS  Google Scholar 

  91. Spricigo R, Dronov R, Lisdat F, Leimkühler S, Scheller FW, Wollenberger U (2009) Electrocatalytic sulfite biosensor with human sulfite oxidase co-immobilized with cytochrome c in a polyelectrolyte-containing multilayer. Anal Bioanal Chem 393:225–233

    Article  CAS  Google Scholar 

  92. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

    Article  CAS  Google Scholar 

  93. Davis F, Higson SPJ (2007) Biofuel cells—recent advances and applications. Biosens Bioelectron 22:1224–1235

    Article  CAS  Google Scholar 

  94. Ivanov I, Vidaković-Koch T, Sundmacher K (2010) Recent advances in enzymatic fuel cells: experiments and modelling. Energies 3:803–846

    Article  CAS  Google Scholar 

  95. Meredith MT, Minteer SD (2012) Biofuel cells: enhanced enzymatic bioelectrocatalysis. Annu Rev Anal Chem 5:157–179

    Article  CAS  Google Scholar 

  96. Rasmussen M, Abdellaoui S, Minteer SD (2016) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102

    Article  CAS  Google Scholar 

  97. Hambourger M, Gervaldo M, Svedruzic D, King PW, Gust D, Ghirardi M, Moore AL, Moore TA (2008) [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. J Am Chem Soc 130:2015–2022

    Article  CAS  Google Scholar 

  98. Habrioux A, Merle G, Servat K, Kokoh KB, Innocent C, Cretin M, Tingry S (2008) Concentric glucose/O2 biofuel cell. J Electroanal Chem 622:97–102

    Article  CAS  Google Scholar 

  99. Sokic-Lazic D, Minteer SD (2008) Citric acid cycle biomimic on a carbon electrode. Biosens Bioelectron 24:939–944

    Article  CAS  Google Scholar 

  100. Arechederra RL, Minteer SD (2009) Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel cells 9:63–69

    Article  CAS  Google Scholar 

  101. Sokic-Lazic D, Minteer SD (2009) Pyruvate/air enzymatic biofuel cell capable of complete oxidation. Electrochem Solid-State Lett 12:26–28

    Article  Google Scholar 

Download references

Acknowledgements

I am thankful to Alexander von Humboldt Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preety Vatsyayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Switzerland

About this chapter

Cite this chapter

Vatsyayan, P. (2016). Recent Advances in the Study of Electrochemistry of Redox Proteins. In: Matysik, FM. (eds) Trends in Bioelectroanalysis. Bioanalytical Reviews, vol 6. Springer, Cham. https://doi.org/10.1007/11663_2015_5001

Download citation

Publish with us

Policies and ethics