Skip to main content

Periplasmic Binding Proteins in Biosensing Applications

  • Chapter
  • First Online:
Advances in Chemical Bioanalysis

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 1))

Abstract

Periplasmic binding proteins (PBPs) of gram-negative bacteria have been widely used as recognition elements for the development of biosensors for small molecule analytes owing to their intrinsically high selectivity and affinity towards their cognate ligands. Analyte binding is accompanied by a large hinge motion that can readily be transduced to a detectable signal. While fundamental work demonstrating the versatility of PBPs as scaffolds for biosensors dates back to the 1990s, recent years have seen more subtle improvements in detection strategies. Measurement of cellular metabolites with PBP-based biosensors has allowed significant contributions to basic research, and a first functional sensor for continuous blood glucose monitoring with glucose-binding protein as biological recognition element was tested in preclinical trials. In this chapter, strategies and applications of biosensors using PBPs as specifiers will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ru(bpy)3]2+ :

Ruthenium tris(2,2′-bipyridine)dichloride

5-IAF:

5-Iodoacetamidofluorescein

ABP:

Allose-binding protein

Acrylodan:

6-Acryloyl-2-(dimethylamino)naphthalene

AF488:

Alexa Fluor 488

AF680:

Alexa Fluor 680

AF750:

Alexa Fluor 750

ANS:

2-(4′-Iodoacetamidoanilino)naphtalene-6-sulphonic acid

BADAN:

2-Bromo-1-[6-(dimethylamino)-2-naphthalenyl]-ethanone

BLA:

β-Lactamase

BP:

Binding protein

BRET:

Bioluminescence resonance energy transfer

cpGFP:

Circularly permuted GFP

ECFP:

Enhanced cyan fluorescent protein

EDC:

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

EYFP:

Enhanced yellow fluorescent protein

FLIP:

Fluorescent indicator proteins

FP:

Fluorescent protein

FRET:

Förster resonance energy transfer

GBP:

Glucose-/galactose-binding protein

GFP:

Green fluorescent protein

GlnBP:

Glutamine-binding protein

IAEDANS:

5-(Iodoacetamidoethyl)aminonaphthalene-1-sulfonic acid

IANBD:

4-[N-(2-(iodoacetoxy)ethyl)-N-methylamino]-7-nitrobenz-2-oxa-1,3-diazole

K d :

Dissociation constant

LIVBP:

Branched-chain (leucine, isoleucine, valine) amino acid-binding protein

MBP:

Maltose-binding protein

MDCC:

N-[2-(l-maleimidyl)ethyl]-7-(diethylamino)coumarin-3-carboxamide

NBD:

7-Nitrobenz-2-oxa-1,3-diazole

NHS:

N-Hydroxysuccinimide

Ni-NTA:

Nickel nitrilotriacetic acid

NIR:

Near infrared

NMR:

Nuclear magnetic resonance

PBP:

Periplasmic binding protein

PEG:

Polyethylene glycol

PEGDMA:MAA:

PEG-dimethacrylate/methacrylic acid copolymer

PRE:

Paramagnetic resonance enhancement

PDB:

Protein Data Bank

RBP:

Ribose-binding protein

RR:

Rhodamine red

S/N:

Signal-to-noise

SWV:

Squarewave voltammetry

TMR:

Tetramethyl rhodamine

ΔF:

Fluorescence intensity change

τ :

Fluorescence lifetime

References

  1. Tam R, Saier MH Jr (1993) Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346

    CAS  Google Scholar 

  2. Dwyer MA, Hellinga HW (2004) Periplasmic binding proteins: a versatile superfamily for protein engineering. Curr Opin Struct Biol 14:495–504

    CAS  Google Scholar 

  3. Felder CB, Graul RC, Lee AY et al (1999) The Venus flytrap of periplasmic binding proteins: an ancient protein module present in multiple drug receptors. AAPS PharmSci 1:E2

    CAS  Google Scholar 

  4. Wilkinson AJ, Verschueren KHG (2003) Crystal structures of periplasmic solute-binding proteins in ABC transport complexes illuminate their function. In: Holland IB, Susan PCC, Karl K, Higgins CF (eds) ABC proteins. Academic, London

    Google Scholar 

  5. Quiocho FA, Ledvina PS (1996) Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol Microbiol 20:17–25

    CAS  Google Scholar 

  6. Marvin JS, Hellinga HW (2001) Manipulation of ligand binding affinity by exploitation of conformational coupling. Nat Struct Biol 8:795–798

    CAS  Google Scholar 

  7. Marvin JS, Hellinga HW (2001) Conversion of a maltose receptor into a zinc biosensor by computational design. Proc Natl Acad Sci U S A 98:4955–4960

    CAS  Google Scholar 

  8. Allert M, Rizk SS, Looger LL et al (2004) Computational design of receptors for an organophosphate surrogate of the nerve agent soman. Proc Natl Acad Sci U S A 101:7907–7912

    CAS  Google Scholar 

  9. Schreier B, Stumpp C, Wiesner S et al (2009) Computational design of ligand binding is not a solved problem. Proc Natl Acad Sci U S A 106:18491–18496

    CAS  Google Scholar 

  10. Tang C, Schwieters CD, Clore GM (2007) Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature 449:1078–1082

    CAS  Google Scholar 

  11. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    CAS  Google Scholar 

  12. Davidson AL, Dassa E, Orelle C et al (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    CAS  Google Scholar 

  13. Deuschle K, Fehr M, Hilpert M et al (2005) Genetically encoded sensors for metabolites. Cytometry A 64A:3–9

    CAS  Google Scholar 

  14. Quiocho FA, Higgins CF (1990) Atomic structures of periplasmic binding proteins and the high-affinity active transport systems in bacteria [and discussion]. Philos Trans R Soc Lond B Biol Sci 326:341–352

    CAS  Google Scholar 

  15. Heddle J, Scott DJ, Unzai S et al (2003) Crystal structures of the liganded and unliganded nickel-binding protein NikA from Escherichia coli. J Biol Chem 278:50322–50329

    CAS  Google Scholar 

  16. Vyas NK, Vyas MN, Quiocho FA (1987) A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Nature (Lond) 327:635–638

    CAS  Google Scholar 

  17. Stepanenko OV, Povarova OI, Stepanenko OV et al (2010) Structure and stability of D-galactose/D-glucose-binding protein. The role of D-glucose binding and Ca ion depletion. Spectroscopy 24:355–359

    Google Scholar 

  18. Schrödinger, LLC (2010) The PyMOL molecular graphics system, Version 1.3.

    Google Scholar 

  19. Borrok MJ, Kiessling LL, Forest KT (2007) Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures. Protein Sci 16:1032–1041

    CAS  Google Scholar 

  20. Duan X, Quiocho FA (2001) Structural evidence for a dominant role of nonpolar interactions in the binding of a transport/chemosensory receptor to its highly polar ligands. Biochemistry 41:706–712

    Google Scholar 

  21. Quiocho FA, Spurlino JC, Rodseth LE (1997) Extensive features of tight oligosaccharide binding revealed in high-resolution structures of the maltodextrin transport/chemosensory receptor. Structure (London) 5:997–1015

    CAS  Google Scholar 

  22. Raines DJ, Moroz OV, Wilson KS et al (2013) Interactions of a periplasmic binding protein with a tetradentate siderophore mimic. Angew Chem 52:4595–4598

    CAS  Google Scholar 

  23. Mao B, Pear MR, McCammon JA et al (1982) Hinge-bending in L-arabinose-binding protein. The “Venus's-flytrap” model. J Biol Chem 257:1131–1133

    CAS  Google Scholar 

  24. Sack JS, Saper MA, Quiocho FA (1989) Periplasmic binding protein structure and function: refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J Mol Biol 206:171–191

    CAS  Google Scholar 

  25. Döring K, Surrey T, Nollert P et al (1999) Effects of ligand binding on the internal dynamics of maltose-binding protein. Eur J Biochem 266:477–483

    Google Scholar 

  26. Bermejo GA, Strub M-P, Ho C et al (2010) Ligand-free open−closed transitions of periplasmic binding proteins: the case of glutamine-binding protein. Biochemistry 49:1893–1902

    CAS  Google Scholar 

  27. Ortega G, Castaño D, Diercks T et al (2012) Carbohydrate affinity for the glucose-galactose binding protein is regulated by allosteric domain motions. J Am Chem Soc 134:19869

    CAS  Google Scholar 

  28. Björkman AJ, Mowbray SL (1998) Multiple open forms of ribose-binding protein trace the path of its conformational change. J Mol Biol 279:651–664

    Google Scholar 

  29. Magnusson U, Chaudhuri BN, Ko J et al (2002) Hinge-bending motion of D-Allose-binding protein from Escherichia coli. J Biol Chem 277:14077–14084

    CAS  Google Scholar 

  30. Trakhanov S, Vyas NK, Luecke H et al (2005) Ligand-free and -bound structures of the binding protein (LivJ) of the Escherichia coli ABC Leucine/Isoleucine/Valine transport system: trajectory and dynamics of the interdomain rotation and ligand specificity. Biochemistry 44:6597–6608

    CAS  Google Scholar 

  31. Telmer PG, Shilton BH (2003) Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants. J Biol Chem 278:34555–34567

    CAS  Google Scholar 

  32. Conroy PJ, Hearty S, Leonard P et al (2009) Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 20:10–26

    CAS  Google Scholar 

  33. Bergmeyer HU, Bergmeyer J, Grassl M (1983) Methods of enzymatic analysis. Verlag Chemie, Weilheim (Vol. Bd. 1)

    Google Scholar 

  34. Hönes J, Müller P, Surridge N (2008) The technology behind glucose meters: test strips. Diabetes Technol Ther 10:S-10–S-26

    Google Scholar 

  35. Lever JE (1972) Quantitative assay of the binding of small molecules to protein: comparison of dialysis and membrane filter assays. Anal Biochem 50:73–83

    CAS  Google Scholar 

  36. Oshima RG, Willis RC, Furlong CE et al (1974) Binding assays for amino acids. J Biol Chem 249:6033–6039

    CAS  Google Scholar 

  37. Willis RC, Seegmiller JE (1976) A filtration assay specific for the determination of small quantities of l-glutamine. Anal Biochem 72:66–77

    CAS  Google Scholar 

  38. Zukin RS, Strange PG, Heavey LR et al (1977) Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli. Biochemistry 16:381–386

    CAS  Google Scholar 

  39. Medintz IL, Deschamps JR (2006) Maltose-binding protein: a versatile platform for prototyping biosensing. Curr Opin Biotechnol 17:17–27

    CAS  Google Scholar 

  40. Loving GS, Sainlos M, Imperiali B (2010) Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends Biotechnol 28:73–83

    CAS  Google Scholar 

  41. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Google Scholar 

  42. Boos W, Gordon AS, Hall RE et al (1972) Transport properties of the Galactose-binding protein of Escherichia coli. J Biol Chem 247:917–924

    CAS  Google Scholar 

  43. Zukin RS, Hartig PR, Koshland DE (1977) Use of a distant reporter group as evidence for a conformational change in a sensory receptor. Proc Natl Acad Sci 74:1932–1936

    CAS  Google Scholar 

  44. Zhou LQ, Cass AEG (1991) Periplasmic binding protein based biosensors. 1. Preliminary study of maltose binding protein as sensing element for maltose biosensor. Biosens Bioelectron 6:445–450

    CAS  Google Scholar 

  45. Sohanpal K, Watsuji T, Zhou LQ et al (1993) Reagentless fluorescence sensors based upon specific binding proteins. Sens Actuators B Chem 11:547–552

    CAS  Google Scholar 

  46. Gilardi G, Zhou LQ, Hibbert L et al (1994) Engineering the maltose binding protein for reagentless fluorescence sensing. Anal Chem 66:3840–3847

    CAS  Google Scholar 

  47. de Lorimier RM, Smith JJ, Dwyer MA et al (2002) Construction of a fluorescent biosensor family. Protein Sci 11:2655–2675

    Google Scholar 

  48. Amiss TJ, Sherman DB, Nycz CM et al (2007) Engineering and rapid selection of a low-affinity glucose/galactose-binding protein for a glucose biosensor. Protein Sci 16:2350–2359

    CAS  Google Scholar 

  49. Khan F, Saxl TE, Pickup JC (2010) Fluorescence intensity- and lifetime-based glucose sensing using an engineered high-Kd mutant of glucose/galactose-binding protein. Anal Biochem 399:39–43

    CAS  Google Scholar 

  50. Dattelbaum JD, Looger LL, Benson DE et al (2005) Analysis of allosteric signal transduction mechanisms in an engineered fluorescent maltose biosensor. Protein Sci 14:284–291

    CAS  Google Scholar 

  51. Sherman DB, Pitner JB, Ambroise A et al (2006) Synthesis of thiol-reactive, long-wavelength fluorescent phenoxazine derivatives for biosensor applications. Bioconjug Chem 17:387–392

    CAS  Google Scholar 

  52. Thomas J, Sherman DB, Amiss TJ et al (2007) Synthesis and biosensor performance of a near-IR thiol-reactive fluorophore based on Benzothiazolium Squaraine. Bioconjug Chem 18:1841–1846

    CAS  Google Scholar 

  53. Thomas J, Cash MT (2008) Preparation of coumarin containing dyes having ratiometric fluorescence response for biosensor in detecting metabolites. Patent number WO2008147805A2

    Google Scholar 

  54. Thomas J, Ambroise A, Birchfield K et al (2006) Long wavelength fluorescence based biosensors for in vivo continuous monitoring of metabolites. Proc SPIE-Int Soc Opt Eng 6078:60781Y-1–60781Y-9

    Google Scholar 

  55. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108:423–461

    CAS  Google Scholar 

  56. Weidemaier K, Lastovich A, Keith S et al (2011) Multi-day pre-clinical demonstration of glucose/galactose binding protein-based fiber optic sensor. Biosens Bioelectron 26:4117–4123

    CAS  Google Scholar 

  57. Tolosa L, Ge X, Rao G (2003) Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein. Anal Biochem 314:199–205

    CAS  Google Scholar 

  58. Lam H, Kostov Y, Rao G et al (2008) Low-cost optical lifetime assisted ratiometric glutamine sensor based on glutamine binding protein. Anal Biochem 383:61–67

    CAS  Google Scholar 

  59. Ge X, Tolosa L, Rao G (2004) Dual-labeled glucose binding protein for ratiometric measurements of glucose. Anal Chem 76:1403–1410

    CAS  Google Scholar 

  60. Gilardi G, Mei G, Rosato N et al (1997) Spectroscopic properties of an engineered maltose binding protein. Protein Eng 10:479–486

    CAS  Google Scholar 

  61. Brune M, Hunter JL, Howell SA et al (1998) Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry 37:10370–10380

    CAS  Google Scholar 

  62. Dattelbaum JD, Lakowicz JR (2001) Optical determination of glutamine using a genetically engineered protein. Anal Biochem 291:89–95

    CAS  Google Scholar 

  63. Saxl T, Khan F, Matthews DR et al (2009) Fluorescence lifetime spectroscopy and imaging of nano-engineered glucose sensor microcapsules based on glucose/galactose-binding protein. Biosens Bioelectron 24:3229–3234

    CAS  Google Scholar 

  64. Saxl T, Khan F, Ferla M et al (2011) A fluorescence lifetime-based fibre-optic glucose sensor using glucose/galactose-binding protein. Analyst 136:968–972 (Cambridge, UK)

    CAS  Google Scholar 

  65. Tolosa L (2009) On the design of low-cost fluorescent protein biosensors. Adv Biochem Eng Biotechnol 116:143–157

    CAS  Google Scholar 

  66. Lakowicz JR, Castellano FN, Dattelbaum JD et al (1998) Low-frequency modulation sensors using nanosecond fluorophores. Anal Chem 70:5115–5121

    CAS  Google Scholar 

  67. Tolosa L, Gryczynski I, Eichhorn LR et al (1999) Glucose sensor for low-cost lifetime-based sensing using a genetically engineered protein. Anal Biochem 267:114–120

    CAS  Google Scholar 

  68. Ge X, Lam H, Modi SJ et al (2007) Comparing the performance of the optical glucose assay based on glucose binding protein with high-performance anion-exchange chromatography with pulsed electrochemical detection: efforts to design a low-cost point-of-care glucose sensor. J Diabetes Sci Technol 1:864–872

    Google Scholar 

  69. Wenner BR, Douglass P, Shrestha S et al (2001) Genetically designed biosensing systems for high-throughput screening of pharmaceuticals, clinical diagnostics, and environmental monitoring. Proc SPIE-Int Soc Opt Eng 4252:59–70

    CAS  Google Scholar 

  70. Frommer WB, Davidson MW, Campbell RE (2009) Genetically encoded biosensors based on engineered fluorescent proteins. Chem Soc Rev 38:2833–2841

    CAS  Google Scholar 

  71. Okumoto S, Takanaga H, Frommer WB (2008) Quantitative imaging for discovery and assembly of the metabo-regulome. New Phytol 180:271–295

    CAS  Google Scholar 

  72. Galbán J, Sanz-Vicente I, Ortega E et al (2012) Reagentless fluorescent biosensors based on proteins for continuous monitoring systems. Anal Bioanal Chem 402:3039–3054

    Google Scholar 

  73. Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci 99:9846–9851

    CAS  Google Scholar 

  74. Deuschle K, Okumoto S, Fehr M et al (2005) Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Sci 14:2304–2314

    CAS  Google Scholar 

  75. Ha J-S, Song JJ, Lee Y-M et al (2007) Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells. Appl Environ Microbiol 73:7408–7414

    CAS  Google Scholar 

  76. Gu H, Lalonde S, Okumoto S et al (2006) A novel analytical method for in vivo phosphate tracking. FEBS Lett 580:5885–5893

    CAS  Google Scholar 

  77. Takanaga H, Chaudhuri B, Frommer WB (2008) GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim Biophys Acta 1778:1091–1099

    CAS  Google Scholar 

  78. Okada S, Ota K, Ito T (2009) Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRET-based nanosensor. Protein Sci 18:2518–2527

    CAS  Google Scholar 

  79. Okumoto S, Looger LL, Micheva KD et al (2005) Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proc Natl Acad Sci U S A 102:8740–8745

    CAS  Google Scholar 

  80. Fehr M, Lalonde S, Lager I et al (2003) In Vivo imaging of the dynamics of glucose uptake in the Cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278:19127–19133

    CAS  Google Scholar 

  81. Fehr M, Lalonde S, Ehrhardt DW et al (2004) Live imaging of glucose homeostasis in nuclei of COS-7 cells. J Fluoresc 14:603–609

    CAS  Google Scholar 

  82. Deuschle K, Chaudhuri B, Okumoto S et al (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-Silencing mutants. Plant Cell 18:2314–2325

    CAS  Google Scholar 

  83. Bermejo C, Haerizadeh F, Takanaga H et al (2011) Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat Protoc 6:1806–1817

    CAS  Google Scholar 

  84. Dulla C, Tani H, Okumoto S et al (2008) Imaging of glutamate in brain slices using FRET sensors. J Neurosci Methods 168:306–319

    CAS  Google Scholar 

  85. Kaper T, Lager I, Looger LL et al (2008) Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnol Biofuels 1:11

    Google Scholar 

  86. Hou B-H, Takanaga H, Grossmann G et al (2011) Optical sensors for monitoring dynamic changes of intracellular metabolite levels in mammalian cells. Nat Protoc 6:1818–1833

    CAS  Google Scholar 

  87. Bermejo C, Ewald JC, Lanquar V et al (2011) In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast. Biochem J 438:1–10

    CAS  Google Scholar 

  88. Crochet AP, Kabir MM, Francis MB et al (2010) Site-selective dual modification of periplasmic binding proteins for sensing applications. Biosens Bioelectron 26:55–61

    CAS  Google Scholar 

  89. Smith JJ, Conrad DW, Cuneo MJ et al (2005) Orthogonal site-specific protein modification by engineering reversible thiol protection mechanisms. Protein Sci 14:64–73

    CAS  Google Scholar 

  90. Dweik M, Milanick M, Grant S (2007) Development of a glucose binding protein biosensor. Proc SPIE-Int Soc Opt Eng 6759:67590I-1–67590I-8

    Google Scholar 

  91. Okoh MP, Hunter JL, Corrie JET et al (2006) A biosensor for inorganic phosphate using a rhodamine-labeled phosphate binding protein. Biochemistry 45:14764–14771

    CAS  Google Scholar 

  92. Der BS, Dattelbaum JD (2008) Construction of a reagentless glucose biosensor using molecular exciton luminescence. Anal Biochem 375:132–140

    CAS  Google Scholar 

  93. Dacres H, Michie M, Anderson A et al (2013) Advantages of substituting bioluminescence for fluorescence in a resonance energy transfer-based periplasmic binding protein biosensor. Biosens Bioelectron 41:459–464

    CAS  Google Scholar 

  94. Shekhawat SS, Ghosh I (2011) Split-protein systems: beyond binary protein-protein interactions. Curr Opin Chem Biol 15:789–797

    CAS  Google Scholar 

  95. Stynen B, Tournu H, Tavernier J et al (2012) Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 76:331–382

    CAS  Google Scholar 

  96. Teasley Hamorsky K, Ensor CM, Wei Y et al (2008) A bioluminescent molecular switch for glucose. Angew Chem 120:3778–3781

    Google Scholar 

  97. Taneoka A, Sakaguchi-Mikami A, Yamazaki T et al (2009) The construction of a glucose-sensing luciferase. Biosens Bioelectron 25:76–81

    CAS  Google Scholar 

  98. Sakaguchi-Mikami A, Taniguchi A, Sode K et al (2011) Construction of a novel glucose-sensing molecule based on a substrate-binding protein for intracellular sensing. Biotechnol Bioeng 108:725–733

    CAS  Google Scholar 

  99. Guntas G, Ostermeier M (2004) Creation of an allosteric enzyme by domain insertion. J Mol Biol 336:263–273

    CAS  Google Scholar 

  100. Guntas G, Mitchell SF, Ostermeier M (2004) A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol 11:1483–1487

    CAS  Google Scholar 

  101. Guntas G, Mansell TJ, Kim JR et al (2005) Directed evolution of protein switches and their application to the creation of ligand-binding proteins. Proc Natl Acad Sci U S A 102:11224–11229

    CAS  Google Scholar 

  102. Ke W, Laurent AH, Armstrong MD et al (2012) Structure of an engineered beta-Lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. PLoS One 7:e39168

    CAS  Google Scholar 

  103. Tullman J, Guntas G, Dumont M et al (2011) Protein switches identified from diverse insertion libraries created using S1 nuclease digestion of supercoiled-form plasmid DNA. Biotechnol Bioeng 108:2535–2543

    CAS  Google Scholar 

  104. Jeong J, Kim SK, Ahn J et al (2006) Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochem Biophys Res Commun 339:647–651

    CAS  Google Scholar 

  105. Marvin JS, Schreiter ER, Echevarria IM et al (2011) A genetically encoded, high-signal-to-noise maltose sensor. Proteins 79:3025–3036

    CAS  Google Scholar 

  106. Alicea I, Marvin JS, Miklos AE et al (2011) Structure of the Escherichia coli phosphonate binding protein PhnD and rationally optimized phosphonate biosensors. J Mol Biol 414:356–369

    CAS  Google Scholar 

  107. Vallée-Bélisle A, Plaxco KW (2010) Structure-switching biosensors: inspired by nature. Curr Opin Struct Biol 20:518–526

    Google Scholar 

  108. Trammell SA, Goldston HM, Tran PT et al (2001) Synthesis and characterization of a Ruthenium(II)-based redox conjugate for reagentless biosensing. Bioconjug Chem 12:643–647

    CAS  Google Scholar 

  109. Marvin JS, Corcoran EE, Hattangadi NA et al (1997) The rational design of allosteric interactions in a monomeric protein and its applications to the construction of biosensors. Proc Natl Acad Sci 94:4366–4371

    CAS  Google Scholar 

  110. Benson DE, Conrad DW, de Lorimier RM et al (2001) Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins. Science 293:1641–1644

    CAS  Google Scholar 

  111. Morón C, Tremps E, Garcia A et al (2012) Development of an electrochemical maltose biosensor. Key Eng Mat 495:116–119

    Google Scholar 

  112. Wang J, Carmon KS, Luck LA et al (2005) Electrochemical impedance biosensor for glucose detection utilizing a periplasmic E. coli receptor protein. Electrochem Solid St 8:H61–H64

    CAS  Google Scholar 

  113. Wang J, Luck LA, Suni II (2007) Immobilization of the Glucose-Galactose receptor protein onto a Au electrode through a genetically engineered cysteine residue. Electrochem Solid St 10:J33–J36

    CAS  Google Scholar 

  114. Sokolov I, Subba-Rao V, Luck LA (2006) Change in rigidity in the activated form of the Glucose/Galactose receptor from Escherichia coli: a phenomenon that will be key to the development of biosensors. Biophys J 90:1055–1063

    CAS  Google Scholar 

  115. Andreescu S, Luck LA (2008) Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: a glucose biosensor application. Anal Biochem 375:282–290

    CAS  Google Scholar 

  116. Costa SA, Azevedo HS, Reis RL (2005) Enzyme immobilization in biodegradable polymers for biomedical applications. In: Reis RL, Roman JS (eds) Biodegradable systems in tissue engineering and regenerative medicine. CRC, Boca Raton, pp 301–323. doi:10.1201/9780203491232.ch17

    Google Scholar 

  117. Dattelbaum AM, Baker GA, Fox JM et al (2009) PEGylation of a maltose biosensor promotes enhanced signal response when immobilized in a Silica Sol-Gel. Bioconjug Chem 20:2381–2384

    CAS  Google Scholar 

  118. Wada A, Mie M, Aizawa M et al (2003) Design and construction of glutamine binding proteins with a self-adhering capability to unmodified hydrophobic surfaces as reagentless fluorescence sensing devices. J Am Chem Soc 125:16228–16234

    CAS  Google Scholar 

  119. de Lorimier RM, Tian Y, Hellinga HW (2006) Binding and signaling of surface-immobilized reagentless fluorescent biosensors derived from periplasmic binding proteins. Protein Sci 15:1936–1944

    Google Scholar 

  120. Ye K, Schultz JS (2003) Genetic engineering of an allosterically based glucose indicator protein for continuous glucose monitoring by fluorescence resonance energy transfer. Anal Chem 75:3451–3459

    CAS  Google Scholar 

  121. Salins LLE, Deo SK, Daunert S (2004) Phosphate binding protein as the biorecognition element in a biosensor for phosphate. Sens Actuators B B97:81–89

    Google Scholar 

  122. Heo YJ, Takeuchi S (2012) Hydrogel microbeads for implantable glucose sensors. In: Ramalingam M, Tiwari A, Ramakrishna S, Kobayashi H (eds) Integrated biomaterials for biomedical technology. Scrivener Publishing LLC, Beverly MA

    Google Scholar 

  123. Siegrist J, Kazarian T, Ensor C et al (2010) Continuous glucose sensor using novel genetically engineered binding polypeptides towards in vivo applications. Sens Actuators B 149:51–58

    CAS  Google Scholar 

  124. Staiano M, Sapio M, Scognamiglio V et al (2004) A thermostable sugar-binding protein from the Archaeon Pyrococcus horikoshii as a probe for the development of a stable fluorescence biosensor for diabetic patients. Biotechnol Prog 20:1572–1577

    CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Stacy DuVall for helpful discussions on electrochemical topics and critical reading of the draft. Thomas Meier is acknowledged for valuable suggestions to the draft. This work was promoted by the European Union under grant agreement number 264772 (ITN CHEBANA).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grünewald, F.S. (2013). Periplasmic Binding Proteins in Biosensing Applications. In: Matysik, FM. (eds) Advances in Chemical Bioanalysis. Bioanalytical Reviews, vol 1. Springer, Cham. https://doi.org/10.1007/11663_2013_7

Download citation

Publish with us

Policies and ethics