Skip to main content

Hyphenation of Electrochemistry with Mass Spectrometry for Bioanalytical Studies

  • Chapter
  • First Online:
Advances in Chemical Bioanalysis

Part of the book series: Bioanalytical Reviews ((BIOREV,volume 1))

  • 1205 Accesses

Abstract

Hyphenation of electrochemistry (EC) and mass spectrometry (MS) is a growing research field with particular importance for bioanalytical applications. It opens the way for studying reaction mechanisms and metabolic pathways of biological compounds and drugs. Electrochemical conversion of sample molecules prior to MS analysis gives rise to short-lived intermediates and products naturally occurring in biological systems, which leads to better understanding of physiological processes. Numerous interesting and attractive studies in this field have been published so far demonstrating potential of EC–MS coupling. The combination with separation system such as liquid chromatography or capillary electrophoresis widens the scope of application providing additional information about compounds of interest. The combination of EC with liquid chromatography has been the most frequently used hyphenated system due to the simplicity of coupling to mass spectrometric detection. In terms of bioanalytical applications capillary electrophoresis offers some advantages and is a complementary technique to liquid chromatography. This review summarizes recent developments in this field from both instrumental and application perspectives. A rather new approach of coupling electrochemistry–capillary electrophoresis–mass spectrometry and its potential for bioanalysis is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APAP:

Acetaminophen

AQ:

Amodiaquine

Arg:

Arginine

BDD:

Boron-doped diamond

CE:

Capillary electrophoresis

CEM:

Chain ejection model

CLZ:

Clozapine

CRM:

Charge residue model

DEMS:

Differential electrochemical mass spectrometry

DESI:

Desorption electrospray ionization

DNA:

Deoxyribonucleic acid

EAI:

Electrochemically assisted injection

EC:

Electrochemistry

ESI:

Electrospray ionization

FTICR:

Fourier transform ion cyclotron resonance

GAL:

Galantamine

GMP:

Guanosine monophosphate

GSH:

Glutathione

ICP–MS:

Inductively coupled plasma mass spectrometry

IDA:

Interdigitated array

IEM:

Ion evaporation model

IR:

Infrared

LC:

Liquid chromatography

LYC:

Lycorine

MALDI:

Matrix-assisted laser desorption/ionization

MEKC:

Micellar electrokinetic chromatography

MS:

Mass spectrometry

NACE:

Nonaqueous capillary electrophoresis

NMR:

Nuclear magnetic resonance

RNA:

Ribonucleic acid

SECM:

Scanning electrochemical microscopy

SPE:

Screen-printed electrode

TCC:

Triclocarban

TOF:

Time-of-flight

Trp:

Tryptophan

Tyr:

Tyrosine

β-LGA:

β-lactoglobulin

References

  1. Bruckenstein S, Gadde RR (1971) Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products. J Am Chem Soc 93:793–794

    Article  CAS  Google Scholar 

  2. Wolter O, Heitbaum J (1984) Differential electrochemical mass-spectroscopy (DEMS) – a new method for the study of electrode processes. Berichte der Bunsengesellschaft für physikalische Chemie 88:2–6

    Article  CAS  Google Scholar 

  3. Volk KJ, Yost RA, Brajter-Toth A (1992) Electrochemistry on line with mass spectrometry, insight into biological redox reactions. Anal Chem 64:21A–26A

    CAS  Google Scholar 

  4. Lohmann W, Karst U (2008) Biomimetic modeling of oxidative drug metabolism. Anal Bioanal Chem 391:79–96

    Article  CAS  Google Scholar 

  5. Odijk M, Olthuis W, Van den Berg A, Qiao L, Girault H (2012) Improved conversion rates in drug screening applications using miniaturized electrochemical cells with frit channels. Anal Chem 84:9176–9183

    CAS  Google Scholar 

  6. De la Mora JF, Van Berkel GJ, Enke CG, Cole RB, Martinez-Sanchez M, Fenn JB (2000) Electrochemical processes in electrospray ionization mass spectrometry. J Mass Spectrom 35:939–952

    Article  Google Scholar 

  7. Crotti S, Seraglia R, Traldi P (2011) Some thoughts on electrospray ionization mechanism. Eur J Mass Spectrom 17:85–100

    Article  CAS  Google Scholar 

  8. Plattner S, Erb R, Chervet JP, Oberacher H (2012) Ascorbic acid for homogenous redox buffering in electrospray ionization–mass spectrometry. Anal Bioanal Chem 404:1571–1579

    Article  CAS  Google Scholar 

  9. Konermann L, Ahadi E, Rodriguez AD, Vahidi S (2013) Unraveling the mechanism of electrospray ionization. Anal Chem 85:2–9

    Article  CAS  Google Scholar 

  10. Pitterl F, Chervet JP, Oberacher H (2010) Electrochemical simulation of oxidation processes involving nucleic acids monitored with electrospray ionization–mass spectrometry. Anal Bioanal Chem 397:1203–1215

    Article  CAS  Google Scholar 

  11. Karst U (2004) Electrochemistry/mass spectrometry (EC/MS) — a new tool to study drug metabolism and reaction mechanisms. Angew Chem Int Ed 43:2476–2478

    Article  CAS  Google Scholar 

  12. Getek TA, Korfmacher WA, McRae TA, Hinson JA (1989) Utility of solution electrochemistry mass spectrometry for investigating the formation and detection of biologically important conjugates of acetaminophen. J Chromatogr A 474:245–256

    Article  CAS  Google Scholar 

  13. Baumann A, Lohmann W, Schubert B, Oberacherb H, Karst U (2009) Metabolic studies of tetrazepam based on electrochemical simulation in comparison to in vivo and in vitro methods. J Chromatogr A 1216:3192–3198

    Article  CAS  Google Scholar 

  14. Jahn S, Baumann A, Roscher J, Hense K, Zazzeroni R, Karst U (2011) Investigation of the biotransformation pathway of verapamil using electrochemistry/liquid chromatography/mass spectrometry – a comparative study with liver cell microsomes. J Chromatogr A 1218:9210–9220

    Article  CAS  Google Scholar 

  15. Jahn S, Seiwert B, Kretzing S, Abraham G, Regenthal R, Karst U (2012) Metabolic studies of the Amaryllidaceous alkaloids galantamine and lycorine based on electrochemical simulation in addition to in vivo and in vitro models. Anal Chim Acta 756:60–72

    Article  CAS  Google Scholar 

  16. Jurva U, Holmén A, Grönberg G, Masimirembwa C, Weidolf L (2008) Electrochemical generation of electrophilic drug metabolites: characterization of amodiaquine quinoneimine and cysteinyl conjugates by MS, IR, and NMR. Chem Res Toxicol 21:928–935

    Article  CAS  Google Scholar 

  17. Baumann A, Lohmann W, Rose T, Ahn KC, Hammock BD, Karst U, Schebb NH (2010) Electrochemistry-mass spectrometry unveils the formation of reactive triclocarban metabolites. Drug Metabolism Disposition 38:2130–2138

    Article  CAS  Google Scholar 

  18. Lohmann W, Hayen H, Karst U (2008) Covalent protein modification by reactive drug metabolites using online electrochemistry/liquid chromatography/mass spectrometry. Anal Chem 80:9714–9719

    Article  CAS  Google Scholar 

  19. Lohmann W, Meermann B, Moller I, Scheffer A, Karst U (2008) Quantification of electrochemically generated iodine-containing metabolites using inductively coupled plasma mass spectrometry. Anal Chem 80:9769–9775

    Article  CAS  Google Scholar 

  20. Jahn S, Lohmann W, Bomke S, Baumann A, Karst U (2012) A ferrocene-based reagent for the conjugation and quantification of reactive metabolites. Anal Bioanal Chem 402:461–471

    Article  CAS  Google Scholar 

  21. Faber H, Melles D, Brauckmann C, Wehe C, Wentker K, Karst U (2012) Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry. Anal Bioanal Chem 403:345–354

    Article  CAS  Google Scholar 

  22. Lohmann W, Karst U (2009) Electrochemistry meets enzymes: instrumental on-line simulation of oxidative and conjugative metabolism reactions of toremifene. Anal Bioanal Chem 394:1341–1348

    Article  CAS  Google Scholar 

  23. Baumann A, Faust A, Law M, Michael T, Kuhlmann M, Kopka K, Scheafers M, Karst U (2011) Metabolite identification of a radiotracer by electrochemistry coupled to liquid chromatography with mass spectrometric and radioactivity detection. Anal Chem 83:5415–5421

    Article  CAS  Google Scholar 

  24. Melles D, Vielhaber T, Baumann A, Zazzeroni R, Karst U (2012) Electrochemical oxidation and protein adduct formation of aniline: a liquid chromatography/mass spectrometry study. Anal Bioanal Chem 403:377–384

    Article  CAS  Google Scholar 

  25. Jahn S, Faber H, Zazzeroni R, Karst U (2012) Electrochemistry/liquid chromatography/mass spectrometry to demonstrate irreversible binding of the skin allergen p-phenylenediamine to proteins. Rapid Commun Mass Spectrom 26:1415–1425

    Article  CAS  Google Scholar 

  26. Jahn S, Faber H, Zazzeroni R, Karst U (2012) Electrochemistry/mass spectrometry as a tool in the investigation of the potent skin sensitizer p-phenylenediamine and its reactivity toward nucleophiles. Rapid Commun Mass Spectrom 26:1453–1464

    Article  CAS  Google Scholar 

  27. Tong W, Chowdhury SK, Su A, Alton KB (2010) Quantitation of parent drug and its unstable metabolites by in situ coulometric oxidation and liquid chromatography-tandem mass spectrometry. Anal Chem 82:10251–10257

    Article  CAS  Google Scholar 

  28. Mali’n TJ, Weidolf L, Castagnoli N, Jurva J, Jurva U (2010) P450-catalyzed vs. electrochemical oxidation of haloperidol studied by ultra-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 24:1231–1240

    Article  Google Scholar 

  29. Zettersten C, Sjoberg P, Nyholm L (2009) Oxidation of 4-chloroaniline studied by on-line electrochemistry electrospray ionization mass spectrometry. Anal Chem 81:5180–5187

    Article  CAS  Google Scholar 

  30. Lohmann W, Dötzer R, Gütter G, Van Leeuwen S, Karst U (2009) On-line electrochemistry/liquid chromatography/mass spectrometry for the simulation of pesticide metabolism. J Am Soc Mass Spectrom 20:138–145

    Article  CAS  Google Scholar 

  31. Nouri-Nigjeh E, Permentier H, Bischoff R, Bruins A (2010) Lidocaine oxidation by electrogenerated reactive oxygen species in the light of oxidative drug metabolism. Anal Chem 82:7625–7633

    Article  CAS  Google Scholar 

  32. Nouri-Nigjeh E, Bruins A, Bischoff R, Permentier H (2012) Electrocatalytic oxidation of hydrogen peroxide on a platinum electrode in the imitation of oxidative drug metabolism of lidocaine. Analyst 137:4698

    Article  CAS  Google Scholar 

  33. Zettersten C, Co M, Wende S, Turner C, Nyholm L, Sjoberg P (2009) Identification and characterization of polyphenolic antioxidants using on-line liquid chromatography, electrochemistry and electrospray ionization tandem mass spectrometry. Anal Chem 81:8968–8977

    Article  CAS  Google Scholar 

  34. Karady M, Novk O, Horna A, Strnad M, Dolez K (2011) High performance liquid chromatography-electrochemistry-electrospray ionization mass spectrometry (HPLC/EC/ESI-MS) for detection and characterization of roscovitine oxidation products. Electroanalysis 23(12):2898–2905

    Article  CAS  Google Scholar 

  35. Nozaki K, Osaka I, Kawasaki H, Arakawa R (2009) Application of online electrochemistry/electrospray/tandem mass spectrometry to a quantification method for the antipsychotic drug zotepine in human serum. Anal Sci 25:1197–1201

    Article  CAS  Google Scholar 

  36. Bussy U, Ferchaud-Roucher V, Tea I, Krempf M, Silvestre V, Boujtita M (2012) Electrochemical oxidation behavior of Acebutolol and identification of intermediate species by liquid chromatography and mass spectrometry. Electrochim Acta 69:351–357

    Article  CAS  Google Scholar 

  37. Chen L, Hofmann D, Klumpp E, Xiang X, Chen Y, Küppers S (2012) Bottom-up approach for the reaction of xenobiotics and their metabolites with model substances for natural organic matter by electrochemistry–mass spectrometry (EC–MS). Chemosphere 89:1376–1383

    Article  CAS  Google Scholar 

  38. Hoffmann T, Hofmann D, Klumpp E, Küppers S (2011) Electrochemistry-mass spectrometry for mechanistic studies and simulation of oxidation processes in the environment. Anal Bioanal Chem 399:1859–1868

    Article  CAS  Google Scholar 

  39. Nouri-Nigjeh E, Bischoff R, Bruins A, Permentier H (2011) Electrochemical oxidation by square-wave potential pulses in the imitation of phenacetin to acetaminophen biotransformation. Analyst 136:5064

    Article  CAS  Google Scholar 

  40. Jirovsky D, Bednar P, Myjavcova R, Bartosova Z, Skopalova J, Tvrdonova M, Lemr K (2011) Study of electrochemical oxidation of cyanidin glycosides by online combination of electrochemistry with electrospray ionization tandem mass spectrometry. Monatsh Chem 142:1211–1217

    Article  CAS  Google Scholar 

  41. Tahara K, Makii E, Iijima S, Abe Y, Mochizuki M (2008) On-line liquid chromatography and circular dichroism detection of stereo-isomers of α-tocopherol derivatives generated by an electrochemical reaction. Anal Sci 24

    Google Scholar 

  42. Erb R, Plattner S, Pitter F, Brouwer H, Oberacher H (2012) An optimized electrochemistry-liquid chromatography-mass spectrometry method for studying guanosine oxidation. Electrophoresis 33:614–621

    Article  CAS  Google Scholar 

  43. Baumann A, Lohmann W, Jahn S, Karst U (2010) On-line electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) for the generation and identification of nucleotide oxidation products. Electroanalysis 22(3):286–292

    Article  CAS  Google Scholar 

  44. Mautjana N, Estes J, Eyler J, Brajter-Toth A (2008) One-electron oxidation and sensitivity of uric acid in on-line electrochemistry and in electrospray ionization mass spectrometry. Electroanalysis 20(23):2501–2508

    Article  CAS  Google Scholar 

  45. Mautjana N, Looi D, Eyler J, Brajter-Toth A (2009) Sensitivity of positive ion mode electrospray ionization mass spectrometry (ESI MS) in the analysis of purine bases in ESI MS and on-line electrochemistry ESI MS (EC/ESI MS). Electrochim Acta 55:52–58

    Article  CAS  Google Scholar 

  46. Mautjana N, Estes J, Eyler J, Brajter-Toth A (2008) Antioxidant pathways and one-electron oxidation of dopamine and cysteine in electrospray and on-line electrochemistry electrospray ionization mass spectrometry. Electroanalysis 20(18):1959–1967

    Article  CAS  Google Scholar 

  47. Looi D, Eyler J, Brajter-Toth A (2011) Electrochemistry-electrospray ionization FT ICR mass spectrometry (EC ESI MS) of guanine–tyrosine and guanine–glutathione crosslinks formed on-line. Electrochim Acta 56:2633–2640

    Article  CAS  Google Scholar 

  48. Plattner S, Erba R, Pitterl F, Brouwerb H, Oberacher H (2012) Formation and characterization of covalent guanosine adducts with electrochemistry—liquid chromatography–mass spectrometry. J Chromatogr B 883–884:198–204

    Article  Google Scholar 

  49. Telgmann L, Faber H, Jahn S, Mellesa D, Simon H, Sperling M, Karst U (2012) Identification and quantification of potential metabolites of Gd-based contrast agents by electrochemistry/separations/mass spectrometry. J Chromatogr A 1240:147–155

    Article  CAS  Google Scholar 

  50. Roeser J, Bischoff R, Bruins A, Permentier H (2010) Oxidative protein labeling in mass-spectrometry-based proteomics. Anal Bioanal Chem 397:3441–3455

    Article  CAS  Google Scholar 

  51. Roeser J, Permentier H, Bruins A, Bischoff R (2010) Electrochemical Oxidation and Cleavage of Tyrosine- and Tryptophan-Containing Tripeptides. Anal Chem 82:7556–7565

    Article  CAS  Google Scholar 

  52. Basile F, Hauser N (2011) Rapid online nonenzymatic protein digestion combining microwave heating acid hydrolysis and electrochemical oxidation. Anal Chem 83:359–367

    Article  CAS  Google Scholar 

  53. McClintock C, Kertesz V, Hettich R (2008) Development of an electrochemical oxidation method for probing higher order protein structure with mass spectrometry. Anal Chem 80:3304–3317

    Article  CAS  Google Scholar 

  54. Gutkin V, Gun J, Lev O (2009) Electrochemical deposition-stripping analysis of molecules and proteins by online electrochemical flow cell/mass spectrometry. Anal Chem 81:8396–8404

    Article  CAS  Google Scholar 

  55. Takats Z, Wiseman JM, Gologan B, Cooks R (2004) Graham Sci. (Washington, DC) 306(5695):471–473

    Google Scholar 

  56. Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ (2012) Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84(1):141–148

    Article  CAS  Google Scholar 

  57. Roach P, Laskin J, Laskin A (2010) Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135:2233–2236

    Article  CAS  Google Scholar 

  58. Miao Z, Chen H (2009) Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J Am Soc Mass Spectrom 20:10–19

    Article  CAS  Google Scholar 

  59. Li J, Dewald H, Chen H (2009) Online coupling of electrochemical reactions with liquid sample desorption electrospray ionization-mass spectrometry. Anal Chem 81:9716–9722

    Article  CAS  Google Scholar 

  60. Lu M, Wolff C, Cui W, Chen H (2012) Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization. Anal Bioanal Chem 403:355–365

    Article  CAS  Google Scholar 

  61. Zhang Y, Cui W, Zhang H, Dewald H, Chen H (2012) Electrochemistry-assisted top-down characterization of disulfide-containing proteins. Anal Chem 84:3838–3842

    Article  CAS  Google Scholar 

  62. Zhang Y, Dewald H, Chen H (2011) Online mass spectrometric analysis of proteins/peptides following electrolytic cleavage of disulfide bonds. J Proteome Res 10:1293–1304

    Article  CAS  Google Scholar 

  63. Liu P, Lanekoff I, Laskin J, Dewald H, Chen H (2012) Study of electrochemical reactions using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84:5737–5743

    Article  CAS  Google Scholar 

  64. Zhang Y, Yuan Z, Dewald H, Chen H (2011) Coupling of liquid chromatography with mass spectrometry by desorption electrospray ionization (DESI). Chem Commun 47:4171–4173

    Article  CAS  Google Scholar 

  65. Momotenko D, Qiao L, Rodriguez A, Cortes-Salazar F, Lesch A, Wittstock G, Girault H (2012) Electrochemical push−pull scanner with mass spectrometry detection. Anal Chem 84:6630–6637

    Article  CAS  Google Scholar 

  66. Momotenko D, Cortes-Salazar F, Lesch A, Wittstock G, Girault H (2011) Microfluidic push-pull probe for scanning electrochemical microscopy. Anal Chem 83:5275–5282

    Article  CAS  Google Scholar 

  67. Cortes-Salazar F, Lesch A, Momotenko D, Busnel J, Wittstock G, Girault H (2010) Fountain pen for scanning electrochemical microscopy. Anal Methods 2:817–823

    Article  CAS  Google Scholar 

  68. Qiao L, Lu Y, Liu B, Girault H (2011) Copper-catalyzed tyrosine nitration. J Am Chem Soc 133:19823–19831

    Article  CAS  Google Scholar 

  69. Smith RD, Barinaga CJ, Udseth HR (1988) Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry. Anal Chem 60:1948–1952

    Article  CAS  Google Scholar 

  70. Maxwell E, Chen D (2008) Twenty years of development for capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chim Acta 627:25–33

    Article  CAS  Google Scholar 

  71. Bonvin G, Schappler J, Rudaz S (2012) Capillary electrophoresis-electrospray ionization-mass spectrometry interfaces: fundamental concepts and technical developments. J Chromatogr A 1267:17–31

    Article  CAS  Google Scholar 

  72. Grundmann M (2012) PhD Thesis, University of Regensburg

    Google Scholar 

  73. Matysik FM (2003) Electrochemically assisted injection – a new approach for hyphenation of electrochemistry with capillary-based separation systems. Electrochem Commun 5:1021–1024

    Article  CAS  Google Scholar 

  74. Scholz R, Matysik FM (2011) A novel approach for the separation of neutral analytes by means of electrochemically assisted injection coupled to capillary electrophoresis-mass spectrometry. Analyst 136:1562–1565

    Article  CAS  Google Scholar 

  75. Palatzky P, Matysik FM (2011) Development of capillary-based SECM probes for the characterization of cell arrangements for electrochemically assisted injection. Electroanalysis 23:50–54

    Article  CAS  Google Scholar 

  76. Palatzky P, Matysik FM (2012) Development and characterization of a novel semiautomated arrangement for electrochemically assisted injection in combination with capillary electrophoresis time-of-flight mass spectrometry. Electrophoresis 33:2689–2694

    Article  CAS  Google Scholar 

  77. Palatzky P, Zöpfl A, Hirsch T, Matysik FM (2013) Electrochemically assisted injection in combination with capillary electrophoresis-mass spectrometry (EAI-CE-MS) – mechanistic and quantitative studies of the reduction of 4-nitrotoluene at various carbon-based screen-printed electrodes. Electroanalysis 25:117–122

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union under Grant Agreement number 264772 (ITN CHEBANA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank‐Michael Matysik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cindric, M., Matysik, F. (2013). Hyphenation of Electrochemistry with Mass Spectrometry for Bioanalytical Studies. In: Matysik, FM. (eds) Advances in Chemical Bioanalysis. Bioanalytical Reviews, vol 1. Springer, Cham. https://doi.org/10.1007/11663_2013_6

Download citation

Publish with us

Policies and ethics