Advertisement

Hyphenation of Electrochemistry with Mass Spectrometry for Bioanalytical Studies

  • Marija Cindric
  • Frank‐Michael MatysikEmail author
Chapter
  • 1k Downloads
Part of the Bioanalytical Reviews book series (BIOREV, volume 1)

Abstract

Hyphenation of electrochemistry (EC) and mass spectrometry (MS) is a growing research field with particular importance for bioanalytical applications. It opens the way for studying reaction mechanisms and metabolic pathways of biological compounds and drugs. Electrochemical conversion of sample molecules prior to MS analysis gives rise to short-lived intermediates and products naturally occurring in biological systems, which leads to better understanding of physiological processes. Numerous interesting and attractive studies in this field have been published so far demonstrating potential of EC–MS coupling. The combination with separation system such as liquid chromatography or capillary electrophoresis widens the scope of application providing additional information about compounds of interest. The combination of EC with liquid chromatography has been the most frequently used hyphenated system due to the simplicity of coupling to mass spectrometric detection. In terms of bioanalytical applications capillary electrophoresis offers some advantages and is a complementary technique to liquid chromatography. This review summarizes recent developments in this field from both instrumental and application perspectives. A rather new approach of coupling electrochemistry–capillary electrophoresis–mass spectrometry and its potential for bioanalysis is presented.

Keywords

Bioanalysis Capillary electrophoresis Electrochemistry Liquid chromatography Mass spectrometry 

Abbreviations

APAP

Acetaminophen

AQ

Amodiaquine

Arg

Arginine

BDD

Boron-doped diamond

CE

Capillary electrophoresis

CEM

Chain ejection model

CLZ

Clozapine

CRM

Charge residue model

DEMS

Differential electrochemical mass spectrometry

DESI

Desorption electrospray ionization

DNA

Deoxyribonucleic acid

EAI

Electrochemically assisted injection

EC

Electrochemistry

ESI

Electrospray ionization

FTICR

Fourier transform ion cyclotron resonance

GAL

Galantamine

GMP

Guanosine monophosphate

GSH

Glutathione

ICP–MS

Inductively coupled plasma mass spectrometry

IDA

Interdigitated array

IEM

Ion evaporation model

IR

Infrared

LC

Liquid chromatography

LYC

Lycorine

MALDI

Matrix-assisted laser desorption/ionization

MEKC

Micellar electrokinetic chromatography

MS

Mass spectrometry

NACE

Nonaqueous capillary electrophoresis

NMR

Nuclear magnetic resonance

RNA

Ribonucleic acid

SECM

Scanning electrochemical microscopy

SPE

Screen-printed electrode

TCC

Triclocarban

TOF

Time-of-flight

Trp

Tryptophan

Tyr

Tyrosine

β-LGA

β-lactoglobulin

Notes

Acknowledgments

This work was supported by the European Union under Grant Agreement number 264772 (ITN CHEBANA).

References

  1. 1.
    Bruckenstein S, Gadde RR (1971) Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products. J Am Chem Soc 93:793–794CrossRefGoogle Scholar
  2. 2.
    Wolter O, Heitbaum J (1984) Differential electrochemical mass-spectroscopy (DEMS) – a new method for the study of electrode processes. Berichte der Bunsengesellschaft für physikalische Chemie 88:2–6CrossRefGoogle Scholar
  3. 3.
    Volk KJ, Yost RA, Brajter-Toth A (1992) Electrochemistry on line with mass spectrometry, insight into biological redox reactions. Anal Chem 64:21A–26AGoogle Scholar
  4. 4.
    Lohmann W, Karst U (2008) Biomimetic modeling of oxidative drug metabolism. Anal Bioanal Chem 391:79–96CrossRefGoogle Scholar
  5. 5.
    Odijk M, Olthuis W, Van den Berg A, Qiao L, Girault H (2012) Improved conversion rates in drug screening applications using miniaturized electrochemical cells with frit channels. Anal Chem 84:9176–9183Google Scholar
  6. 6.
    De la Mora JF, Van Berkel GJ, Enke CG, Cole RB, Martinez-Sanchez M, Fenn JB (2000) Electrochemical processes in electrospray ionization mass spectrometry. J Mass Spectrom 35:939–952CrossRefGoogle Scholar
  7. 7.
    Crotti S, Seraglia R, Traldi P (2011) Some thoughts on electrospray ionization mechanism. Eur J Mass Spectrom 17:85–100CrossRefGoogle Scholar
  8. 8.
    Plattner S, Erb R, Chervet JP, Oberacher H (2012) Ascorbic acid for homogenous redox buffering in electrospray ionization–mass spectrometry. Anal Bioanal Chem 404:1571–1579CrossRefGoogle Scholar
  9. 9.
    Konermann L, Ahadi E, Rodriguez AD, Vahidi S (2013) Unraveling the mechanism of electrospray ionization. Anal Chem 85:2–9CrossRefGoogle Scholar
  10. 10.
    Pitterl F, Chervet JP, Oberacher H (2010) Electrochemical simulation of oxidation processes involving nucleic acids monitored with electrospray ionization–mass spectrometry. Anal Bioanal Chem 397:1203–1215CrossRefGoogle Scholar
  11. 11.
    Karst U (2004) Electrochemistry/mass spectrometry (EC/MS) — a new tool to study drug metabolism and reaction mechanisms. Angew Chem Int Ed 43:2476–2478CrossRefGoogle Scholar
  12. 12.
    Getek TA, Korfmacher WA, McRae TA, Hinson JA (1989) Utility of solution electrochemistry mass spectrometry for investigating the formation and detection of biologically important conjugates of acetaminophen. J Chromatogr A 474:245–256CrossRefGoogle Scholar
  13. 13.
    Baumann A, Lohmann W, Schubert B, Oberacherb H, Karst U (2009) Metabolic studies of tetrazepam based on electrochemical simulation in comparison to in vivo and in vitro methods. J Chromatogr A 1216:3192–3198CrossRefGoogle Scholar
  14. 14.
    Jahn S, Baumann A, Roscher J, Hense K, Zazzeroni R, Karst U (2011) Investigation of the biotransformation pathway of verapamil using electrochemistry/liquid chromatography/mass spectrometry – a comparative study with liver cell microsomes. J Chromatogr A 1218:9210–9220CrossRefGoogle Scholar
  15. 15.
    Jahn S, Seiwert B, Kretzing S, Abraham G, Regenthal R, Karst U (2012) Metabolic studies of the Amaryllidaceous alkaloids galantamine and lycorine based on electrochemical simulation in addition to in vivo and in vitro models. Anal Chim Acta 756:60–72CrossRefGoogle Scholar
  16. 16.
    Jurva U, Holmén A, Grönberg G, Masimirembwa C, Weidolf L (2008) Electrochemical generation of electrophilic drug metabolites: characterization of amodiaquine quinoneimine and cysteinyl conjugates by MS, IR, and NMR. Chem Res Toxicol 21:928–935CrossRefGoogle Scholar
  17. 17.
    Baumann A, Lohmann W, Rose T, Ahn KC, Hammock BD, Karst U, Schebb NH (2010) Electrochemistry-mass spectrometry unveils the formation of reactive triclocarban metabolites. Drug Metabolism Disposition 38:2130–2138CrossRefGoogle Scholar
  18. 18.
    Lohmann W, Hayen H, Karst U (2008) Covalent protein modification by reactive drug metabolites using online electrochemistry/liquid chromatography/mass spectrometry. Anal Chem 80:9714–9719CrossRefGoogle Scholar
  19. 19.
    Lohmann W, Meermann B, Moller I, Scheffer A, Karst U (2008) Quantification of electrochemically generated iodine-containing metabolites using inductively coupled plasma mass spectrometry. Anal Chem 80:9769–9775CrossRefGoogle Scholar
  20. 20.
    Jahn S, Lohmann W, Bomke S, Baumann A, Karst U (2012) A ferrocene-based reagent for the conjugation and quantification of reactive metabolites. Anal Bioanal Chem 402:461–471CrossRefGoogle Scholar
  21. 21.
    Faber H, Melles D, Brauckmann C, Wehe C, Wentker K, Karst U (2012) Simulation of the oxidative metabolism of diclofenac by electrochemistry/(liquid chromatography/)mass spectrometry. Anal Bioanal Chem 403:345–354CrossRefGoogle Scholar
  22. 22.
    Lohmann W, Karst U (2009) Electrochemistry meets enzymes: instrumental on-line simulation of oxidative and conjugative metabolism reactions of toremifene. Anal Bioanal Chem 394:1341–1348CrossRefGoogle Scholar
  23. 23.
    Baumann A, Faust A, Law M, Michael T, Kuhlmann M, Kopka K, Scheafers M, Karst U (2011) Metabolite identification of a radiotracer by electrochemistry coupled to liquid chromatography with mass spectrometric and radioactivity detection. Anal Chem 83:5415–5421CrossRefGoogle Scholar
  24. 24.
    Melles D, Vielhaber T, Baumann A, Zazzeroni R, Karst U (2012) Electrochemical oxidation and protein adduct formation of aniline: a liquid chromatography/mass spectrometry study. Anal Bioanal Chem 403:377–384CrossRefGoogle Scholar
  25. 25.
    Jahn S, Faber H, Zazzeroni R, Karst U (2012) Electrochemistry/liquid chromatography/mass spectrometry to demonstrate irreversible binding of the skin allergen p-phenylenediamine to proteins. Rapid Commun Mass Spectrom 26:1415–1425CrossRefGoogle Scholar
  26. 26.
    Jahn S, Faber H, Zazzeroni R, Karst U (2012) Electrochemistry/mass spectrometry as a tool in the investigation of the potent skin sensitizer p-phenylenediamine and its reactivity toward nucleophiles. Rapid Commun Mass Spectrom 26:1453–1464CrossRefGoogle Scholar
  27. 27.
    Tong W, Chowdhury SK, Su A, Alton KB (2010) Quantitation of parent drug and its unstable metabolites by in situ coulometric oxidation and liquid chromatography-tandem mass spectrometry. Anal Chem 82:10251–10257CrossRefGoogle Scholar
  28. 28.
    Mali’n TJ, Weidolf L, Castagnoli N, Jurva J, Jurva U (2010) P450-catalyzed vs. electrochemical oxidation of haloperidol studied by ultra-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 24:1231–1240CrossRefGoogle Scholar
  29. 29.
    Zettersten C, Sjoberg P, Nyholm L (2009) Oxidation of 4-chloroaniline studied by on-line electrochemistry electrospray ionization mass spectrometry. Anal Chem 81:5180–5187CrossRefGoogle Scholar
  30. 30.
    Lohmann W, Dötzer R, Gütter G, Van Leeuwen S, Karst U (2009) On-line electrochemistry/liquid chromatography/mass spectrometry for the simulation of pesticide metabolism. J Am Soc Mass Spectrom 20:138–145CrossRefGoogle Scholar
  31. 31.
    Nouri-Nigjeh E, Permentier H, Bischoff R, Bruins A (2010) Lidocaine oxidation by electrogenerated reactive oxygen species in the light of oxidative drug metabolism. Anal Chem 82:7625–7633CrossRefGoogle Scholar
  32. 32.
    Nouri-Nigjeh E, Bruins A, Bischoff R, Permentier H (2012) Electrocatalytic oxidation of hydrogen peroxide on a platinum electrode in the imitation of oxidative drug metabolism of lidocaine. Analyst 137:4698CrossRefGoogle Scholar
  33. 33.
    Zettersten C, Co M, Wende S, Turner C, Nyholm L, Sjoberg P (2009) Identification and characterization of polyphenolic antioxidants using on-line liquid chromatography, electrochemistry and electrospray ionization tandem mass spectrometry. Anal Chem 81:8968–8977CrossRefGoogle Scholar
  34. 34.
    Karady M, Novk O, Horna A, Strnad M, Dolez K (2011) High performance liquid chromatography-electrochemistry-electrospray ionization mass spectrometry (HPLC/EC/ESI-MS) for detection and characterization of roscovitine oxidation products. Electroanalysis 23(12):2898–2905CrossRefGoogle Scholar
  35. 35.
    Nozaki K, Osaka I, Kawasaki H, Arakawa R (2009) Application of online electrochemistry/electrospray/tandem mass spectrometry to a quantification method for the antipsychotic drug zotepine in human serum. Anal Sci 25:1197–1201CrossRefGoogle Scholar
  36. 36.
    Bussy U, Ferchaud-Roucher V, Tea I, Krempf M, Silvestre V, Boujtita M (2012) Electrochemical oxidation behavior of Acebutolol and identification of intermediate species by liquid chromatography and mass spectrometry. Electrochim Acta 69:351–357CrossRefGoogle Scholar
  37. 37.
    Chen L, Hofmann D, Klumpp E, Xiang X, Chen Y, Küppers S (2012) Bottom-up approach for the reaction of xenobiotics and their metabolites with model substances for natural organic matter by electrochemistry–mass spectrometry (EC–MS). Chemosphere 89:1376–1383CrossRefGoogle Scholar
  38. 38.
    Hoffmann T, Hofmann D, Klumpp E, Küppers S (2011) Electrochemistry-mass spectrometry for mechanistic studies and simulation of oxidation processes in the environment. Anal Bioanal Chem 399:1859–1868CrossRefGoogle Scholar
  39. 39.
    Nouri-Nigjeh E, Bischoff R, Bruins A, Permentier H (2011) Electrochemical oxidation by square-wave potential pulses in the imitation of phenacetin to acetaminophen biotransformation. Analyst 136:5064CrossRefGoogle Scholar
  40. 40.
    Jirovsky D, Bednar P, Myjavcova R, Bartosova Z, Skopalova J, Tvrdonova M, Lemr K (2011) Study of electrochemical oxidation of cyanidin glycosides by online combination of electrochemistry with electrospray ionization tandem mass spectrometry. Monatsh Chem 142:1211–1217CrossRefGoogle Scholar
  41. 41.
    Tahara K, Makii E, Iijima S, Abe Y, Mochizuki M (2008) On-line liquid chromatography and circular dichroism detection of stereo-isomers of α-tocopherol derivatives generated by an electrochemical reaction. Anal Sci 24Google Scholar
  42. 42.
    Erb R, Plattner S, Pitter F, Brouwer H, Oberacher H (2012) An optimized electrochemistry-liquid chromatography-mass spectrometry method for studying guanosine oxidation. Electrophoresis 33:614–621CrossRefGoogle Scholar
  43. 43.
    Baumann A, Lohmann W, Jahn S, Karst U (2010) On-line electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) for the generation and identification of nucleotide oxidation products. Electroanalysis 22(3):286–292CrossRefGoogle Scholar
  44. 44.
    Mautjana N, Estes J, Eyler J, Brajter-Toth A (2008) One-electron oxidation and sensitivity of uric acid in on-line electrochemistry and in electrospray ionization mass spectrometry. Electroanalysis 20(23):2501–2508CrossRefGoogle Scholar
  45. 45.
    Mautjana N, Looi D, Eyler J, Brajter-Toth A (2009) Sensitivity of positive ion mode electrospray ionization mass spectrometry (ESI MS) in the analysis of purine bases in ESI MS and on-line electrochemistry ESI MS (EC/ESI MS). Electrochim Acta 55:52–58CrossRefGoogle Scholar
  46. 46.
    Mautjana N, Estes J, Eyler J, Brajter-Toth A (2008) Antioxidant pathways and one-electron oxidation of dopamine and cysteine in electrospray and on-line electrochemistry electrospray ionization mass spectrometry. Electroanalysis 20(18):1959–1967CrossRefGoogle Scholar
  47. 47.
    Looi D, Eyler J, Brajter-Toth A (2011) Electrochemistry-electrospray ionization FT ICR mass spectrometry (EC ESI MS) of guanine–tyrosine and guanine–glutathione crosslinks formed on-line. Electrochim Acta 56:2633–2640CrossRefGoogle Scholar
  48. 48.
    Plattner S, Erba R, Pitterl F, Brouwerb H, Oberacher H (2012) Formation and characterization of covalent guanosine adducts with electrochemistry—liquid chromatography–mass spectrometry. J Chromatogr B 883–884:198–204CrossRefGoogle Scholar
  49. 49.
    Telgmann L, Faber H, Jahn S, Mellesa D, Simon H, Sperling M, Karst U (2012) Identification and quantification of potential metabolites of Gd-based contrast agents by electrochemistry/separations/mass spectrometry. J Chromatogr A 1240:147–155CrossRefGoogle Scholar
  50. 50.
    Roeser J, Bischoff R, Bruins A, Permentier H (2010) Oxidative protein labeling in mass-spectrometry-based proteomics. Anal Bioanal Chem 397:3441–3455CrossRefGoogle Scholar
  51. 51.
    Roeser J, Permentier H, Bruins A, Bischoff R (2010) Electrochemical Oxidation and Cleavage of Tyrosine- and Tryptophan-Containing Tripeptides. Anal Chem 82:7556–7565CrossRefGoogle Scholar
  52. 52.
    Basile F, Hauser N (2011) Rapid online nonenzymatic protein digestion combining microwave heating acid hydrolysis and electrochemical oxidation. Anal Chem 83:359–367CrossRefGoogle Scholar
  53. 53.
    McClintock C, Kertesz V, Hettich R (2008) Development of an electrochemical oxidation method for probing higher order protein structure with mass spectrometry. Anal Chem 80:3304–3317CrossRefGoogle Scholar
  54. 54.
    Gutkin V, Gun J, Lev O (2009) Electrochemical deposition-stripping analysis of molecules and proteins by online electrochemical flow cell/mass spectrometry. Anal Chem 81:8396–8404CrossRefGoogle Scholar
  55. 55.
    Takats Z, Wiseman JM, Gologan B, Cooks R (2004) Graham Sci. (Washington, DC) 306(5695):471–473Google Scholar
  56. 56.
    Laskin J, Heath BS, Roach PJ, Cazares L, Semmes OJ (2012) Tissue imaging using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84(1):141–148CrossRefGoogle Scholar
  57. 57.
    Roach P, Laskin J, Laskin A (2010) Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135:2233–2236CrossRefGoogle Scholar
  58. 58.
    Miao Z, Chen H (2009) Direct analysis of liquid samples by desorption electrospray ionization-mass spectrometry (DESI-MS). J Am Soc Mass Spectrom 20:10–19CrossRefGoogle Scholar
  59. 59.
    Li J, Dewald H, Chen H (2009) Online coupling of electrochemical reactions with liquid sample desorption electrospray ionization-mass spectrometry. Anal Chem 81:9716–9722CrossRefGoogle Scholar
  60. 60.
    Lu M, Wolff C, Cui W, Chen H (2012) Investigation of some biologically relevant redox reactions using electrochemical mass spectrometry interfaced by desorption electrospray ionization. Anal Bioanal Chem 403:355–365CrossRefGoogle Scholar
  61. 61.
    Zhang Y, Cui W, Zhang H, Dewald H, Chen H (2012) Electrochemistry-assisted top-down characterization of disulfide-containing proteins. Anal Chem 84:3838–3842CrossRefGoogle Scholar
  62. 62.
    Zhang Y, Dewald H, Chen H (2011) Online mass spectrometric analysis of proteins/peptides following electrolytic cleavage of disulfide bonds. J Proteome Res 10:1293–1304CrossRefGoogle Scholar
  63. 63.
    Liu P, Lanekoff I, Laskin J, Dewald H, Chen H (2012) Study of electrochemical reactions using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 84:5737–5743CrossRefGoogle Scholar
  64. 64.
    Zhang Y, Yuan Z, Dewald H, Chen H (2011) Coupling of liquid chromatography with mass spectrometry by desorption electrospray ionization (DESI). Chem Commun 47:4171–4173CrossRefGoogle Scholar
  65. 65.
    Momotenko D, Qiao L, Rodriguez A, Cortes-Salazar F, Lesch A, Wittstock G, Girault H (2012) Electrochemical push−pull scanner with mass spectrometry detection. Anal Chem 84:6630–6637CrossRefGoogle Scholar
  66. 66.
    Momotenko D, Cortes-Salazar F, Lesch A, Wittstock G, Girault H (2011) Microfluidic push-pull probe for scanning electrochemical microscopy. Anal Chem 83:5275–5282CrossRefGoogle Scholar
  67. 67.
    Cortes-Salazar F, Lesch A, Momotenko D, Busnel J, Wittstock G, Girault H (2010) Fountain pen for scanning electrochemical microscopy. Anal Methods 2:817–823CrossRefGoogle Scholar
  68. 68.
    Qiao L, Lu Y, Liu B, Girault H (2011) Copper-catalyzed tyrosine nitration. J Am Chem Soc 133:19823–19831CrossRefGoogle Scholar
  69. 69.
    Smith RD, Barinaga CJ, Udseth HR (1988) Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry. Anal Chem 60:1948–1952CrossRefGoogle Scholar
  70. 70.
    Maxwell E, Chen D (2008) Twenty years of development for capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chim Acta 627:25–33CrossRefGoogle Scholar
  71. 71.
    Bonvin G, Schappler J, Rudaz S (2012) Capillary electrophoresis-electrospray ionization-mass spectrometry interfaces: fundamental concepts and technical developments. J Chromatogr A 1267:17–31CrossRefGoogle Scholar
  72. 72.
    Grundmann M (2012) PhD Thesis, University of RegensburgGoogle Scholar
  73. 73.
    Matysik FM (2003) Electrochemically assisted injection – a new approach for hyphenation of electrochemistry with capillary-based separation systems. Electrochem Commun 5:1021–1024CrossRefGoogle Scholar
  74. 74.
    Scholz R, Matysik FM (2011) A novel approach for the separation of neutral analytes by means of electrochemically assisted injection coupled to capillary electrophoresis-mass spectrometry. Analyst 136:1562–1565CrossRefGoogle Scholar
  75. 75.
    Palatzky P, Matysik FM (2011) Development of capillary-based SECM probes for the characterization of cell arrangements for electrochemically assisted injection. Electroanalysis 23:50–54CrossRefGoogle Scholar
  76. 76.
    Palatzky P, Matysik FM (2012) Development and characterization of a novel semiautomated arrangement for electrochemically assisted injection in combination with capillary electrophoresis time-of-flight mass spectrometry. Electrophoresis 33:2689–2694CrossRefGoogle Scholar
  77. 77.
    Palatzky P, Zöpfl A, Hirsch T, Matysik FM (2013) Electrochemically assisted injection in combination with capillary electrophoresis-mass spectrometry (EAI-CE-MS) – mechanistic and quantitative studies of the reduction of 4-nitrotoluene at various carbon-based screen-printed electrodes. Electroanalysis 25:117–122CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany

Personalised recommendations