Advertisement

Synthesis of Monodisperse Polymeric Nano- and Microparticles and Their Application in Bioanalysis

  • Isabel M. Perez de Vargas-SansalvadorEmail author
  • Francesco Canfarotta
  • Sergey A. Piletsky
Chapter
  • 1.1k Downloads
Part of the Bioanalytical Reviews book series (BIOREV, volume 1)

Abstract

The production of highly monodisperse polymer particles is very important in different fields, such as research and industry. This interest is due to their wide potential applications, ranging from drug/gene delivery to large scale separation, sensor fabrication and diagnostic applications, due to their special characteristics of uniformity in size, shape and structure. Different methods for the synthesis of monodisperse particles have been reported, but there is a necessity to find new approaches for the synthesis of functionalized monodisperse particles, in order to satisfy growing needs of industry in products with specific characteristics.

This review describes several approaches for fabrication of monodisperse polymer particles with size varying from 1 nm to 1,000 μm, highlighting problems associated with their synthesis and furnishes analysis of present and prospective areas for their applications.

Keywords

Bioanalytical applications Diagnostic applications Monodisperse particles Polymeric particles 

Notes

Acknowledgement

This research was supported by the Research Executive Agency (REA) of the European Union under Grant Agreement number PITN-GA-2010-264772 (ITN CHEBANA).

References

  1. 1.
    Sugimoto T (2001) Monodispersed particles, 1st edn. Elsevier Science, AmsterdamGoogle Scholar
  2. 2.
    Gong B, Ren L, Yan C (2007) Preparation of normal-phase HPLC stationary phase based on monodisperse hydrophilic polymeric beads and their application. J Appl Polym Sci 106:2730–2735Google Scholar
  3. 3.
    McGrath JG, Bock RD, Cathcart JM, Lyon LA (2007) Self-assembly of “paint-on” colloidal crystals using poly(styrene-co-n-isopropylacrylamide) spheres. Chem Mater 19:1584–1591Google Scholar
  4. 4.
    Zhenyu Luo CZ, Syed S, Syarbaini LA, Chen G (2012) Highly monodisperse chemically reactive sub-micrometer particles: polymer colloidal photonic crystals. Colloid Polym Sci 290:141–150Google Scholar
  5. 5.
    Honda M, Kataoka K, Seki T, Takeoka Y (2009) Confined stimuli-responsive polymer gel in inverse opal polymer membrane for colorimetric glucose sensor. Langmuir 25:8349–8356Google Scholar
  6. 6.
    Roy I, Stachowiak MK, Bergey EJ (2008) Nonviral gene transfection nanoparticles: function and applications in the brain. Nanomedicine 4:89–97Google Scholar
  7. 7.
    Chen S-L, Yuan G, Hu C-T (2011) Preparation and size determination of monodisperse silica microspheres for particle size certified reference materials. Powder Technol 207:232–237Google Scholar
  8. 8.
    Werner ME, Karve S, Sukumar R, Cummings ND, Copp JA, Chen RC, Zhang T, Wang AZ (2011) Folate-targeted nanoparticle delivery of chemo- and radiotherapeutics for the treatment of ovarian cancer peritoneal metastasis. Biomaterials 32:8548–8554Google Scholar
  9. 9.
    Sugimoto T (2003) Formation of monodispersed nano- and micro-particles controlled in size, shape, and internal structure. Chem Eng Technol 26:313–321Google Scholar
  10. 10.
    Vanderhoff JW, El-Aasser MS, Micale FJ, Sudol ED, Tseng CM, Silwanowicz A, Kornfeld DM, Vicente FA (1984) Preparation of large-particle-size monodisperse latexes in space: polymerization kinetics and process development. J Dispers Sci Technol 5:231–246Google Scholar
  11. 11.
    Ugelstad J, Mórk PC, Kaggerud KH, Ellingsen T, Berge A (1980) Swelling of oligomer-polymer particles. New methods of preparation. Adv Colloid Interface Sci 13:101–140Google Scholar
  12. 12.
    Okubo M, Shiozaki M, Tsujihiro M, Tsukuda Y (1991) Preparation of micron-size monodisperse polymer particles by seeded polymerization utilizing the dynamic monomer swelling method. Colloid Polym Sci 269:222–226Google Scholar
  13. 13.
    Omi S, Ki K, Yamamoto A, Iso M (1994) Synthesis of polymeric microspheres employing SPG emulsification technique. J Appl Polym Sci 51:1–11Google Scholar
  14. 14.
    Chen C-W, Chen C-Y, Lin C-L (2011) Preparation of monodisperse poly(methyl methacrylate) microspheres: effect of reaction parameters on particle formation, and optical performances of its diffusive agent application. J Polym Res 18:587–594Google Scholar
  15. 15.
    Esen C, Schweiger G (1996) Preparation of monodisperse polymer particles by photopolymerization. J Colloid Interface Sci 179:276–280Google Scholar
  16. 16.
    Kotoulas C, Kiparissides C (2006) A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors. Chem Eng Sci 61:332–346Google Scholar
  17. 17.
    Nilsson H, Mosbach R, Mosbach K (1972) The use of bead polymerization of acrylic monomers for immobilization of enzymes. Biochim Biophys Acta 268:253–256Google Scholar
  18. 18.
    Mayes AG, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68:3769–3774Google Scholar
  19. 19.
    Li K, Stöver HDH (1993) Synthesis of monodisperse poly(divinylbenzene) microspheres. J Polym Sci A Polym Chem 31:3257–3263Google Scholar
  20. 20.
    Hoshino M, Arishima K (1995) Survey of preparation techniques of monodispersed microspheres of glycidyl methacrylate and its derivatives. J Appl Polym Sci 57:921–930Google Scholar
  21. 21.
    Lok KP, Ober CK (1985) Particle size control in dispersion polymerization of polystyrene. Can J Chem 63:209–216Google Scholar
  22. 22.
    Yasuda M, Seki H, Yokoyama H, Ogino H, Ishimi K, Ishikawa H (2001) Simulation of a particle formation stage in the dispersion polymerization of styrene. Macromolecules 34:3261–3270Google Scholar
  23. 23.
    Casimiro T, Banet-Osuna AM, Ramos AM, da Ponte MN, Aguiar-Ricardo A (2005) Synthesis of highly cross-linked poly(diethylene glycol dimethacrylate) microparticles in supercritical carbon dioxide. Eur Polym J 41:1947–1953Google Scholar
  24. 24.
    Brouwer WM (1989) The preparation of small polystyrene latex particles. J Appl Polym Sci 38:1335–1346Google Scholar
  25. 25.
    Lowe PJ, Temple CS (1994) Calcitonin and insulin in isobutylcyanoacrylate nanocapsules: protection against proteases and effect on intestinal absorption in rats. J Pharm Pharmacol 46:547–552Google Scholar
  26. 26.
    Larpent C, Bernard E, Richard J, Vaslin S (1997) Polymerization in microemulsions with polymerizable cosurfactants: a route to highly functionalized nanoparticles. Macromolecules 30:354–362Google Scholar
  27. 27.
    Wei S, Molinelli A, Mizaikoff B (2006) Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol. Biosens Bioelectron 21:1943–1951Google Scholar
  28. 28.
    Rosca ID, Watari F, Uo M (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 99:271–280Google Scholar
  29. 29.
    Blanco D, MaJ A (1998) Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants. Eur J Pharm Biopharm 45:285–294Google Scholar
  30. 30.
    Omi S, Ma G-H, Nagai M (2000) Membrane emulsification a versatile tool for the synthesis of polymeric microspheres. Macromol Symp 151:319–330Google Scholar
  31. 31.
    Qun W, Shoukuan F, Tongyin Y (1994) Emulsion polymerization. Prog Polym Sci 19:703–753Google Scholar
  32. 32.
    Raula J, Eerikäinen H, Kauppinen EI (2004) Influence of the solvent composition on the aerosol synthesis of pharmaceutical polymer nanoparticles. Int J Pharm 284:13–21Google Scholar
  33. 33.
    Jarmer DJ, Lengsfeld CS, Randolph TW (2003) Manipulation of particle size distribution of poly(l-lactic acid) nanoparticles with a jet-swirl nozzle during precipitation with a compressed antisolvent. J Supercrit Fluids 27:317–336Google Scholar
  34. 34.
    Vehring R, Foss WR, Lechuga-Ballesteros D (2007) Particle formation in spray drying. J Aerosol Sci 38:728–746Google Scholar
  35. 35.
    Davankov VA, Ilyin MM, Timofeeva GI, Tsyurupa MP, Yaminsky IV (1999) Atomic force microscopy imaging of novel macromolecular species, nanosponges, and their clusters. J Polym Sci A Polym Chem 37:1451–1455Google Scholar
  36. 36.
    Koh K, Ohno K, Tsujii Y, Fukuda T (2004) Synthesis of well-defined polymers with protected silanol groups by atom transfer radical polymerization and their use for the fabrication of polymeric nanoparticles. Eur Polym J 40:2665–2670Google Scholar
  37. 37.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990Google Scholar
  38. 38.
    Saikia PJ, Lee JM, Lee K, Choe S (2008) Reaction parameters in the raft mediated dispersion polymerization of styrene. J Polym Sci A Polym Chem 46:872–885Google Scholar
  39. 39.
    Shim SE, Shin Y, Jun JW, Lee K, Jung H, Choe S (2003) Living-free-radical emulsion photopolymerization of methyl methacrylate by a surface active iniferter (suriniferter). Macromolecules 36:7994–8000Google Scholar
  40. 40.
    Guerreiro AR, Chianella I, Piletska E, Whitcombe MJ, Piletsky SA (2009) Selection of imprinted nanoparticles by affinity chromatography. Biosens Bioelectron 24:2740–2743Google Scholar
  41. 41.
    Aydınlı B, Tincçer T (2001) Radiation grafting of various water-soluble monomers on ultra-high molecular weight polyethylene powder. Part II: Thermal, FTIR and morphological characterisation. Radiat Phys Chem 62:337–343Google Scholar
  42. 42.
    Cannizzo C, Amigoni-Gerbier S, Larpent C (2005) Boronic acid-functionalized nanoparticles: synthesis by microemulsion polymerization and application as a re-usable optical nanosensor for carbohydrates. Polymer 46:1269–1276Google Scholar
  43. 43.
    Amigoni-Gerbier S, Larpent C (1999) Synthesis and properties of selective metal-complexing nanoparticles. Macromolecules 32:9071–9073Google Scholar
  44. 44.
    Gong T, Wang C (2008) Preparation of highly cross-linked monodispersed functional polystyrene particles by utilizing the delayed addition method. J Mater Sci 43:1926–1932Google Scholar
  45. 45.
    Bai F, Yang X, Li R, Huang B, Huang W (2006) Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization. Polymer 47:5775–5784Google Scholar
  46. 46.
    Bai F, Yang X, Huang W (2006) Narrow-disperse or monodisperse crosslinked and functional core–shell polymer particles prepared by two-stage precipitation polymerization. J Appl Polym Sci 100:1776–1784Google Scholar
  47. 47.
    Chen C-W, Chen C-Y, Cioul Z-H (2010) Preparation of monodisperse functional poly(styrene-co-acrylamidoxime) microsphere with chelating amidoxime group. Colloid Polym Sci 288:665–672Google Scholar
  48. 48.
    Song X-J, Hu J, Wang C-C (2011) Synthesis of highly surface functionalized monodispersed poly(st/dvb/gma) nanospheres with soap-free emulsion polymerization followed by facile “click chemistry” with functionalized alkylthiols. Colloids Surf A Physicochem Eng Asp 380:250–256Google Scholar
  49. 49.
    Song J-S, Winnik MA (2005) Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules 38:8300–8307Google Scholar
  50. 50.
    Song J-S, Tronc F, Winnik MA (2006) Monodisperse, controlled micron-size dye-labeled polystyrene particles by two-stage dispersion polymerization. Polymer 47:817–825Google Scholar
  51. 51.
    Poma A, Turner APF, Piletsky SA (2010) Advances in the manufacture of mip nanoparticles. Trends Biotechnol 28:629–637Google Scholar
  52. 52.
    Piletsky SA, Turner NW, Laitenberger P (2006) Molecularly imprinted polymers in clinical diagnostics—future potential and existing problems. Med Eng Phys 28:971–977Google Scholar
  53. 53.
    Haginaka J (2008) Monodispersed, molecularly imprinted polymers as affinity-based chromatography media. J Chromatogr B 866:3–13Google Scholar
  54. 54.
    Yoshimatsu K, Reimhult K, Krozer A, Mosbach K, Sode K, Ye L (2007) Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: the control of particle size suitable for different analytical applications. Anal Chim Acta 584:112–121Google Scholar
  55. 55.
    Dvorakova G, Haschick R, Chiad K, Klapper M, Müllen K, Biffis A (2010) Molecularly imprinted nanospheres by nonaqueous emulsion polymerization. Macromol Rapid Commun 31:2035–2040Google Scholar
  56. 56.
    Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49Google Scholar
  57. 57.
    Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine – challenge and perspectives. Angew Chem Int Ed 48:872–897Google Scholar
  58. 58.
    Yang Z, Zheng S, Harrison WJ, Harder J, Wen X, Gelovani JG, Qiao A, Li C (2007) Long-circulating near-infrared fluorescence core-cross-linked polymeric micelles: synthesis, characterization, and dual nuclear/optical imaging. Biomacromolecules 8:3422–3428Google Scholar
  59. 59.
    Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102Google Scholar
  60. 60.
    Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed 50:1242–1258Google Scholar
  61. 61.
    Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86Google Scholar
  62. 62.
    Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JAJ, Waggoner AS, Bruchez MP (2007) Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug Chem 18:389–396Google Scholar
  63. 63.
    Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651Google Scholar
  64. 64.
    Sheng Y, Liu C, Yuan Y, Tao X, Yang F, Shan X, Zhou H, Xu F (2009) Long-circulating polymeric nanoparticles bearing a combinatorial coating of peg and water-soluble chitosan. Biomaterials 30:2340–2348Google Scholar
  65. 65.
    Liang Z, Susha AS, Caruso F (2002) Metallodielectric opals of layer-by-layer processed coated colloids. Adv Mater 14:1160–1164Google Scholar
  66. 66.
    Perez de Vargas-Sansalvador IM, Carvajal MA, Roldan-Munoz OM, Banqueri J, Fernandez-Ramos MD, Capitan-Vallvey LF (2009) Phosphorescent sensing of carbon dioxide based on secondary inner-filter quenching. Anal Chim Acta 655:66–74Google Scholar
  67. 67.
    Chu C-S, Lo Y-L (2009) Highly sensitive and linear optical fiber carbon dioxide sensor based on sol–gel matrix doped with silica particles and HPTS. Sens Actuators B Chem 143:205–210Google Scholar
  68. 68.
    Sung T-W, Lo Y-L (2012) Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection. Sens Actuators B Chem 165:119–125Google Scholar
  69. 69.
    Yang H, Zhu Y (2006) Size dependence of SiO2 particles enhanced glucose biosensor. Talanta 68:569–574Google Scholar
  70. 70.
    Kitahara K-I, Yoshihama I, Hanada T, Kokuba H, Arai S (2010) Synthesis of monodispersed molecularly imprinted polymer particles for high-performance liquid chromatographic separation of cholesterol using templating polymerization in porous silica gel bound with cholesterol molecules on its surface. J Chromatogr A 1217:7249–7254Google Scholar
  71. 71.
    Liu Y, Hoshina K, Haginaka J (2010) Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization. Talanta 80:1713–1718Google Scholar
  72. 72.
    Haginaka J, Miura C, Funaya N, Matsunaga H (2012) Monodispersed molecularly imprinted polymer for creatinine by modified precipitation polymerization. Anal Sci 28:315–315Google Scholar
  73. 73.
    Wang J, Cormack PAG, Sherrington DC, Khoshdel E (2003) Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications. Angew Chem Int Ed 42:5336–5338Google Scholar
  74. 74.
    Zhou Q, He J, Tang Y, Xu Z, Li H, Kang C, Jiang J (2012) A novel hydroquinidine imprinted microsphere using a chirality-matching n-acryloyl-l-phenylalanine monomer for recognition of cinchona alkaloids. J Chromatogr A 1238:60–67Google Scholar
  75. 75.
    Castell OK, Allender CJ, Barrow DA (2006) Novel biphasic separations utilising highly selective molecularly imprinted polymers as biorecognition solvent extraction agents. Biosens Bioelectron 22:526–533Google Scholar
  76. 76.
    Ulubayram K, Tunc Y, Baykara E (2007) Molecularly imprinted acrylic-based microspheres for colonic delivery of 5-aminosalicylic acid. J Optoelectron Adv Mater 9:3479–3483Google Scholar
  77. 77.
    Pişkin E, Tuncel SA, Ercan MT, Caner BE (1991) Micron-size monodisperse PSPA beads by phase inversion polymerization for biomedical applications: preparation and a case study. Clin Mater 8:159–164Google Scholar
  78. 78.
    Stanski DR (1983) Radioimmunoassay and related procedures in medicine–1982. Proceedings series; international atomic energy agency. 1983. 823 pp. 15 × 24 cm. J Pharm Sci 72:1234Google Scholar
  79. 79.
    Nustad KJL, Ugelstad J, Ellingsen T, Berge A (1984) Hydrophilic monodisperse particles as solid-phase material in immunoassays: comparison of shell-and-core particles with compact particles. Eur Surg Res 16:80–87Google Scholar
  80. 80.
    Horan PK, Wheeless LL Jr (1977) Quantitative single cell analysis and sorting. Science 198(4313):149–157Google Scholar
  81. 81.
    Iannelli D, D’Apice L, Cottone C, Viscardi M, Scala F, Zoina A, Del Sorbo G, Spigno P, Capparelli R (1997) Simultaneous detection of cucumber mosaic virus, tomato mosaic virus and potato virus y by flow cytometry. J Virol Methods 69:137–145Google Scholar
  82. 82.
    Anderson GP, Kowtha VA, Taitt CR (2010) Detection of fumonisin B1 and ochratoxin A in grain products using microsphere-based fluid array immunoassays. Toxins 2:297–309Google Scholar
  83. 83.
    Czeh A, Mandy F, Feher-Toth S, Torok L, Mike Z, Koszegi B, Lustyik G (2012) A flow cytometry based competitive fluorescent microsphere immunoassay (CFIA) system for detecting up to six mycotoxins. J Immunol Methods 384(1–2):71–80. doi: 10.1016/j.jim.2012.07.010 Google Scholar
  84. 84.
    Horák D, Španová A, Tvrdíková J, Rittich B (2011) Streptavidin-modified magnetic poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) microspheres for selective isolation of bacterial DNA. Eur Polym J 47:1090–1096Google Scholar
  85. 85.
    Plotz CM, Singer JM (1956) The latex fixation test. I. Application to the serologic diagnosis of rheumatoid arthritis. Am J Med 21:888–892Google Scholar
  86. 86.
    Akutsu T, Watanabe K, Motani H, Iwase H, Sakurada K (2012) Evaluation of latex agglutination tests for fibrin–fibrinogen degradation products in the forensic identification of menstrual blood. Leg Med 14:51–54Google Scholar
  87. 87.
    Moraveji M, Hosseini A, Moghaddar N, Namavari MM, Eskandari MH (2012) Development of latex agglutination test with recombinant NcSAG1 for the rapid detection of antibodies to Neospora caninum in cattle. Vet Parasitol 189(2–4):211–217. doi: 10.1016/j.vetpar.2012.04.010 Google Scholar
  88. 88.
    Aoki K, Shikama Y, Yoshida T, Kuroiwa Y (1996) Enzyme-linked immunosorbent assay and latex agglutination inhibition reaction test for cocaine and benzoylecgonine in urine. Forensic Sci Int 77:151–157Google Scholar
  89. 89.
    de Assis TS, Braga AS, Pedras MJ, Oliveira E, Barral A, de Siqueira IC, Costa CH, Costa DL, Holanda TA, Soares VY, Biá M, Caldas Ade J, Romero GA, Rabello A (2011) Multi-centric prospective evaluation of rk39 rapid test and direct agglutination test for the diagnosis of visceral leishmaniasis in Brazil. Trans R Soc Trop Med Hyg 105:81–85Google Scholar
  90. 90.
    Sundar S, Singh RK, Maurya R, Kumar B, Chhabra A, Singh V, Rai M (2006) Serological diagnosis of Indian visceral leishmaniasis: direct agglutination test versus rk39 strip test. Trans R Soc Trop Med Hyg 100:533–537Google Scholar
  91. 91.
    Ye Y, Wang P, Zhou Y, Chen F, Wang X (2011) Evaluation of latex agglutination inhibition reaction test for rapid detection of aflatoxin b1. Food Control 22:1072–1077Google Scholar
  92. 92.
    Keid LB, Soares RM, Vasconcellos SA, Megid J, Salgado VR, Richtzenhain LJ (2009) Comparison of agar gel immunodiffusion test, rapid slide agglutination test, microbiological culture and pcr for the diagnosis of canine brucellosis. Res Vet Sci 86:22–26Google Scholar
  93. 93.
    Horie M, Ogawa H, Yamada K, Hara A, Bui VN, Awad SS, Yoshikawa R, Mase M, Tsukamoto K, Yamaguchi S, Nakamura K, Imai K (2009) A latex agglutination test using a recombinant nucleoprotein for detection of antibodies against avian influenza virus. J Virol Methods 161:259–264Google Scholar
  94. 94.
    Jiang T, Gong D, L-a M, Nie H, Zhou Y, Yao B, Zhao J (2008) Evaluation of a recombinant MIC3 based latex agglutination test for the rapid serodiagnosis of toxoplasma gondii infection in swines. Vet Parasitol 158:51–56Google Scholar
  95. 95.
    Bhaskar S, Banavaliker JN, Hanif M (2003) Large-scale validation of a latex agglutination test for diagnosis of tuberculosis. FEMS Immunol Med Microbiol 39:235–239Google Scholar
  96. 96.
    Nonaka N, Oka M, Kamiya M, Oku Y (2008) A latex agglutination test for the detection of Echinococcus multilocularis coproantigen in the definitive hosts. Vet Parasitol 152:278–283Google Scholar
  97. 97.
    Piletska EV, Piletsky SA (2010) Size matters: influence of the size of nanoparticles on their interactions with ligands immobilized on the solid surface. Langmuir 26:3783–3785Google Scholar
  98. 98.
    Grassian VH (2008) When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J Phys Chem C 112:18303–18313Google Scholar
  99. 99.
    Yang Z, Leon J, Martin M, Harder JW, Zhang R, Liang D, Lu W, Tian M, Gelovani JG, Qiao A, Li C (2009) Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles. Nanotechnology 20(16):165101Google Scholar
  100. 100.
    Gallach D, Recio Sánchez G, Muñoz Noval A, Manso Silván M, Ceccone G, Martín Palma RJ, Torres Costa V, Martínez Duart JM (2010) Functionality of porous silicon particles: surface modification for biomedical applications. Mater Sci Eng B 169:123–127Google Scholar
  101. 101.
    Song X, Huang L, Wu B (2008) Bright and monodispersed phosphorescent particles and their applications for biological assays. Anal Chem 80:5501–5507Google Scholar
  102. 102.
    Yang W, Zhang CG, Qu HY, Yang HH, Xu JG (2004) Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal Chim Acta 503:163–169Google Scholar
  103. 103.
    Khandhar AP, Ferguson RM, Simon JA, Krishnan KM (2012) Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res A 100(3):728–737Google Scholar
  104. 104.
    Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60:1037–1055Google Scholar
  105. 105.
    Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects – pros and cons. Environ Health Perspect 114:1818–1825Google Scholar
  106. 106.
    Simnick AJ, Amiram M, Liu W, Hanna G, Dewhirst MW, Kontos CD, Chilkoti A (2011) In vivo tumor targeting by a ngr-decorated micelle of a recombinant diblock copolypeptide. J Control Release 155:144–151Google Scholar
  107. 107.
    O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176Google Scholar
  108. 108.
    Lee D, Khaja S, Velasquez-Castano JC, Dasari M, Sun C, Petros J, Taylor WR, Murthy N (2007) In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat Mater 6:765–769Google Scholar
  109. 109.
    Hu J, Liu S (2010) Responsive polymers for detection and sensing applications: current status and future developments. Macromolecules 43:8315–8330Google Scholar
  110. 110.
    Lee I, Hwang O, Yoo D, Khang G, Lee D (2011) Detection of hydrogen peroxide in vitro and in vivo using peroxalate chemiluminescent micelles. Bull Korean Chem Soc 32:2187–2192Google Scholar
  111. 111.
    Lee D, Erigala VR, Dasari M, Yu J, Dickson RM, Murthy N (2008) Detection of hydrogen peroxide with chemiluminescent micelles. Int J Nanomedicine 3:471–476Google Scholar
  112. 112.
    Cole AJ, Yang VC, David AE (2011) Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 29:323–332Google Scholar
  113. 113.
    Yu SS, Scherer RL, Ortega RA, Bell CS, O’Neil CP, Hubbell JA, Giorgio TD (2011) Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). J Nanobiotechnology 9:7Google Scholar
  114. 114.
    Ye F, Qin J, Toprak MS, Muhammed M (2011) Multifunctional core-shell nanoparticles: superparamagnetic, mesoporous, and thermosensitive. J Nanopart Res 13:6157–6167Google Scholar
  115. 115.
    Antonietti M, Landfester K (2002) Polyreactions in miniemulsions. Prog Polym Sci 27:689–757Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Isabel M. Perez de Vargas-Sansalvador
    • 1
    Email author
  • Francesco Canfarotta
    • 1
  • Sergey A. Piletsky
    • 1
  1. 1.Cranfield HealthCranfield UniversityCranfieldUK

Personalised recommendations