Advertisement

Indicators for optical oxygen sensors

  • Sergey M. BorisovEmail author
  • Michela QuarantaEmail author
  • Ingo Klimant
Chapter
  • 1.1k Downloads
Part of the Bioanalytical Reviews book series (BIOREV, volume 1)

Abstract

Continuous monitoring of oxygen concentration is of great importance in many different areas of research which range from medical applications to food packaging. In the last three decades, significant progress has been made in the field of optical sensing technology and this review will highlight the one inherent to the development of oxygen indicators. The first section outlines the bioanalytical fields in which optical oxygen sensors have been applied. The second section gives the reader a comprehensive summary of the existing oxygen indicators with a critical highlight on their photophysical and sensing properties. Altogether, this review is meant to give the potential user a guide to select the most suitable oxygen indicator for the particular application of interest.

Keywords

Bioanalysis Oxygen indicators Luminescence Metal complexes Quenching 

Notes

Acknowledgments

Financial support from the European Commission (Grant Agreement number 264772 – ITN CHEBANA) and European Research Council (Project “Oxygen”, N 207233) is gratefully acknowledged.

References

  1. 1.
    Alava-Moreno F, Valencia-Gonzalez MJ, Sanz-Medel A, Diaz-Garcia ME (1997) Oxygen sensing based on the room temperature phosphorescence intensity quenching of some lead-8-hydroxyquinoline complexes. Analyst 122:807–810Google Scholar
  2. 2.
    Alford PC, Cook MJ, Lewis APMGSG, Skarda V, Thomson AJ, Glasper JL, Robbins DJ (1985) Luminescent metal complexes. Part 5. Luminescence properites of ring-substituted 1,10-phenanthroline tris-complexes of ruthenium (II). J Chem Soc Perkin Trans 2:705–709Google Scholar
  3. 3.
    Amao Y (2003) Probes and polymers for optical sensing of oxygen. Mikrochim Acta 143(1):1–12Google Scholar
  4. 4.
    Amao Y, Asai K, Okura I (1999) Photoluminescent oxygen sensing using palladium tetrakis(4-carboxyphenyl)porphyrin self-assembled membrane on alumina. Anal Commun 36(5):179–180Google Scholar
  5. 5.
    Amao Y, Asai K, Okura I (2000) Oxygen sensing based on lifetime of photoexcited triplet state of platinum porphyrin-polystyrene film using time-resolved spectroscopy. J Porphyrins Phthalocyanines 4:292–299Google Scholar
  6. 6.
    Amao Y, Asai KOI, Shinohara H, Nishide H (2000) Platinum porphyrin embedded in poly(1-trimethylsilyl-1-propyne) film as an optical sensor for trace analysis oxygen. Analyst 125:1911–1914Google Scholar
  7. 7.
    Amao Y, Ishikawa Y, Okura I (2001) Green luminescent iridium(III) complex immobilized in fluoropolymer film as optical oxygen-sensing matrial. Anal Chem Acta 445:177–182Google Scholar
  8. 8.
    Amao Y, Ishikawa Y, Okura I, Miyashita T (2001) Optical oxygen sensing material: terbium(III) complex adsorbed thin film. Bull Chem Soc Jpn 74:2455–2449Google Scholar
  9. 9.
    Amao Y, Miyashita T, Okura I (2000) Optical oxygen sensing based on the luminescence change of metalloporphyrins immobilized in styrene-pentafuorostyrene copolymer film. Analyst 125:871–875Google Scholar
  10. 10.
    Amao Y, Okura I (2000) An oxygen sensing system based on the phosphorescence quenching of metalloporohyrin thin film on allumina plates. Analyst 125:1601–1604Google Scholar
  11. 11.
    Amao Y, Okura I (2003) Optical oxygen sensing materials: chemisorption film of ruthenium(II) polypyridyl complexes attached to anionic polymer. Sens Actuators B 88:162–167Google Scholar
  12. 12.
    Amao Y, Okura I, Miyashita T (2000) Optical oxygen sensing based on the luminescence quenching of Europium(III) complex immobilized in fluoropolymer film. Bull Chem Soc Jpn 73:2663–2668Google Scholar
  13. 13.
    Amao Y, Okura I, Miyashita T (2001) Pyrene chemisorption film on an alumina plate as an optical oxygen-sensing material. Bull Chem Soc Jpn 74:1159–1160Google Scholar
  14. 14.
    Amao Y, Tabuchi Y, Yamashita Y, Kimura K (2002) Novel optical oxygen sensing material: metalloporphyrin dispersed in fluorinated poly(aryl ether ketone) films. Eur Polym J 38:675–681Google Scholar
  15. 15.
    Anni M, Rella R (2010) Oxygen optical gas sensing by reversible fluorescence quenching in photo-oxidized poly(9,9-dioctylfluorene) thin films. J Phys Chem B 114:1559–1561Google Scholar
  16. 16.
    Arain S, Gernot JT, Krause C, Gerlach J, Wolfbeis OS, Klimant I (2006) Characterization of microtiterplates with integrated optical sensors for oxygen and pH, and their applications to enzyme activity screening, respirometry, and toxicological assays. Sensors Actuators B Chem 113(2):639–648Google Scholar
  17. 17.
    Babilas P, Lamby P, Prantl L, Schreml S, Jung EM, Liebsch G, Wolfbeis OS, Landthaler M, Szeimies R-M, Abels C (2008) Transcutaneous pO2 imaging during tourniquet-induced forearm ischemia using planar optical oxygen sensors. Skin Res Technol 14(3):304–311Google Scholar
  18. 18.
    Badocco D, Mondin A, Pastore P, Voltolina S, Gross S (2008) dependence of calibration sensitivity of a polysulfone/Ru(II)-tris(4,7-diphenyl-1.10-phenanthroline)-based oxygen optical sensor on its structural parameters. Anal Chem Acta 627:239–246Google Scholar
  19. 19.
    Baldini F, Bacci M, Cosi F, Bianco ADB (1992) Absorption-based optical-fibre oxygen sensor. Sens Actuators B 7:752–757Google Scholar
  20. 20.
    Basu BJ, Anandan C, Rajam KS (2003) Study of the mechanism of degradation of pyrene-based pressure sensitive paints. Sens Actuators B 94(3):257–266Google Scholar
  21. 21.
    Basu BJ, Thirumurugan A, Dinesh AR, Anandan C, Rajam K (2005) Optical oxygen sensor coating based on the fluorescence quenching of a new pyrene derivative. Sens Actuators B 104(1):15–22Google Scholar
  22. 22.
    Bergman I (1968) Rapid-response atmospheric oxygen monitor based on fluorescence quenching. Nature 218:396Google Scholar
  23. 23.
    Bizzarri A, Koehler H, Cajlakovic M, Pasic A, Schaupp L, Klimant I, Ribitsch V (2006) Continuous oxygen monitoring in subcutaneous adipose tissue using microdialysis. Anal Chim Acta 573–574:48–56Google Scholar
  24. 24.
    Borisov SM, Klimant I (2007) Ultrabright oxygen optodes based on cyclometalated iridium(III) coumarin complexes. Anal Chem 79:7501–7509Google Scholar
  25. 25.
    Borisov SMLP, Klimant I (2011) Novel optical trace oxygen sensors based on platinum(II) and palladium(II) complexes with 5,10,15,20-meso-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin covalently immobilized on silica-gel particles. Anal Chim Acta 690(1):108–115Google Scholar
  26. 26.
    Borisov S, Klimant I (2012) New luminescent oxygen-sensing and temperature-sensing materials based on gadolinium(III) and europium(III) complexes embedded in an acridone/polystyrene conjugate. Anal Bioanal Chem. doi: 10.1007/s00216-012-6244-8
  27. 27.
    Borisov SM, Nuss G, Haas W, Saf R, Schmuck M, Klimant I (2009) New NIR-emitting complexes of platinum(II) and palladium(II) with fuorinated benzoporphyrins. J Photochem Photobio A 201:128–135Google Scholar
  28. 28.
    Borisov SM, Nuss G, Klimant I (2008) Red light-excitable oxygen sensing materials based on platinum(II) and palladium(II) benzoporphyrins. Anal Chem 80(24):9435–9442Google Scholar
  29. 29.
    Borisov SM, Wolfbeis OS (2006) Temperature-sensitive europium(III) probes and their use for simultaneous luminescent sensing of temperature and oxygen. Anal Chem 78(14):5094–5101Google Scholar
  30. 30.
    Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461Google Scholar
  31. 31.
    Borisov SM, Zenkl G, Klimant I (2010) Phosphorescent platinum(II) and palladium(II) complexes with azatetrabenzoporphyrins-new red laser diode-compatible indicators for optical oxygen sensing. ACS App Mater Interfaces 2(2):366–374Google Scholar
  32. 32.
    Brinas RP, Troxler T, Hochstrasser RM, Vinogradov SA (2005) Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J Am Chem Soc 127(33):11851–11862Google Scholar
  33. 33.
    Burke CS, Moore JP, Wencel D, McEvoy AK, MacCraith BD (2008) Breath-by-breath measurement of oxygen using a compact optical sensor. J Biomed Opt 13(no. 1):014027Google Scholar
  34. 34.
    Cao Y, Koo Y-EL, Kopelman R (2004) Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. Analyst 129(8):745–750Google Scholar
  35. 35.
    Carraway ER, Demas JN, DeGraff BA (1991) Luminescence quenching mechanism for microheterogeneous systems. Anal Chem 63(4):332–336Google Scholar
  36. 36.
    Cattaneo MV, Male KB, Luong JHT (1992) A chemiluminescence fiber-optic biosensor system for the determination of glutamine in mammalian cell cultures. Biosens Bioelec 7(8):569–574Google Scholar
  37. 37.
    Ceroni P, Lebedev AY, Marchi E, Yuan M, Esipova TV, Bergamini G, Wilson DF, Busch TM, Vinogradov SA (2011) Evaluation of phototoxicity of dendritic porphyrin-based phosphorescent oxygen probes: an in vitro study. Photochem Photobiol Sci 10(6):1056–1065Google Scholar
  38. 38.
    Chan C-M, Chan M-Y, Zhang M, Lo W, Wong K-Y (1999) The performance of oxygen sensing films with ruthenium-adsorbed fumed silica dispersed in silicone rubber. Analyst 124:691–694Google Scholar
  39. 39.
    Chang G, Morigaki K, Tatsu Y, Hikawa T, Goto T, Imaishi H (2011) Vertically integrated human P450 and oxygen sensing film for the annays of P450 metabolic activity. Anal Chem 83:2956–2963Google Scholar
  40. 40.
    Choi MF, Hawkins P (1995) A novel oxygen and/or carbon dioxide-sensitive optical transducer. Talanta 42(3):483–492Google Scholar
  41. 41.
    Choi MF, Hawkins P (1996) A fibre-optic oxygen sensor based on contact charge-transfer absorption. Sens Actuators B 30(3):167–171Google Scholar
  42. 42.
    Choi MMF, Pang WSH, Xiao D, Wu X (2001) An optical glucose biosensor with eggshell membrane as an enzyme immobilization platform. Analyst 126:1558–1563Google Scholar
  43. 43.
    Choi NW, Verbridge SS, Williams RM, Chen J, Kim J-Y, Schmehl R, Farnum CE, Zipfel WR, Fischbach C, Stroock AD (2012) Phosphorescent nanoparticles for quantitative measurements of oxygen profiles in vitro and in vivo. Biomaterials 33(9):2710–2722Google Scholar
  44. 44.
    Chu C-S, Lo Y-L (2010) 2D full-field measurement of oxygen concentration based on the phase fluorometry technique that uses the four-frame integrating-bucket method. Sens Actuators B 147(1):310–315Google Scholar
  45. 45.
    Chu C-S, Lo Y-L (2011) Highly sensitive and linear calibration optical fiber oxygen sensor based on Pt(II) complex embedded in sol–gel matrix. Sens Actuators B 155(1):53–57Google Scholar
  46. 46.
    Clark HA, Barker SL, Brasuel M, Miller MT, Monson E, Parus S, Shi Z-Y, Song A, Thorsrud B, Kopelman R, Ade A, Meixner W, Athey B, Hoyer M, Hill D, Lightle R, Philbert MA (1998) Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs). Sens Actuators B 51:12–16Google Scholar
  47. 47.
    Collman JP, Brauman JI, Doxsee KM, Halbert TR, Hayes SE, Suslick KS (1978) Oxygen binding to cobalt porphyrins. J Am Chem Soc 100(9):2761–2766Google Scholar
  48. 48.
    Cook MJ, Lewis AP, McAuliffe GSG, Skarda V, Thomson AJ, Glasper JL, Robbins DJ (1984) Luminescent metal complexes. Part 1. Tris-chelate of substituted 2,2′-bipyriydyls with ruthenium(II) as dyes for luminescent solar collectors. J Chem Soc Perkin Trans II 1293–1301Google Scholar
  49. 49.
    Cook PLM, Wenzhöfer F, Glud RN, Janssen F, Huettel M (2007) Benthic solute exchange and carbon mineralization on two shallow subtidal sandy sediments: effect of advective pore-water exchange. Limnol Oceanogr 5(52):1943–1963Google Scholar
  50. 50.
    Costa-Fernandez JM, Diaz-Garcia ME, Sanz-Medel A (1998) Sol-gel immobilized room-temperature phosphorescent metal-chelate as luminescent oxygen sensing material. Anal Chem Acta 360:17–26Google Scholar
  51. 51.
    Coyle LM, Gouterman M (1999) Correcting lifetime measurements for temperature. Sens Actuators B 61:92–99Google Scholar
  52. 52.
    Currie MJ, Mapel JK, Heidel TD, Goffri S, Baldo MA (2008) High-efficiency organic solar concentrators for photovoltaics. Science 321(5886):226–228Google Scholar
  53. 53.
    Dawson WR, Kropp JL (1969) Radiationless deactivation and anomalous fluorescence of singlet 1,12-benzperylene. J Phys Chem 73(no. 6):1752–1758Google Scholar
  54. 54.
    Del Bianco A, Baldini F, Bacci M, Klimant I, Wolfbeis OS (1993) A new kind of oxygen-sensitive transducer based on an immobilized metallo-organic compound. Sens Actuators B 11:347–350Google Scholar
  55. 55.
    DeRosa MC, Hodgson DJ, Enright GD, Dawson B, Evans CEB, Crutchley RJ (2004) Iridium luminophore complexes for unimolecular oxygen sensors. J Am Chem Soc 126(24):7619–7626Google Scholar
  56. 56.
    Djurovich PI, Murphy D, Thompson ME, Hernandez B, Gao R, Hunt PL, Selke M (2007) Cyclometalated iridium and platinum complexes as singlet oxygen photosenitizers: quantum yields, queching rates and correlation with electronic strucures. Dalton Trans 34:3763–3770Google Scholar
  57. 57.
    Dmitriev RI, Ropiak HM, Ponomarev GV, Yashunsky DV, Papkovsky DB (2011) Cell-penetrating conjugates of coproporphyrins with oligoarginine peptides: rational design and application for sensing intracellular O2. Bioconjugate Chem 22(12):2507–2518Google Scholar
  58. 58.
    Dmitriev RI, Zhdanov AV, Ponomarev GV, Yashunski DV, Papkovsky DB (2010) Intracellular oxygen-sensitive phosphorescent probes based on cell-penetrating peptides. Anal Biochem 398(1):24–33Google Scholar
  59. 59.
    Donckt EV, Camerman B, Vandeloise (1996) Fibre-optic oxygen sensor based on luminescence quenching of a Pt(II) complex embedded in polymer matrices. Sens Actuators B 32:121–127Google Scholar
  60. 60.
    Douglas P, Eaton K (2002) Response characteristics of thin film oxygen sensors, Pt and Pd octaethylporphyrins in polymer films. Sens Actuators B 82(2–3):200–208Google Scholar
  61. 61.
    Draxler S, Lippitsch ME, Klimant I, Kraus H, Wolfbeis OS (1995) Effects of polumer matrices on the time-resolved luminescence of a ruthenium complex quenched by oxygen. J Phys Chem 99:3162–3167Google Scholar
  62. 62.
    Dremel B, Li S-Y, Schmid R (1992) On-line determination of glucose and lactate concentrations in animal cell culture based on fibre optic detection of oxygen in flow-injection analysis. Biosens Bioelecron 7(2):133–139Google Scholar
  63. 63.
    Dunphy I, Vinogradov SA, Wilson D (2002) Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal Biochem 310(2):191–198Google Scholar
  64. 64.
    Eastwood D, Gouterman M (1970) Porphyrins: XVIII. Luminescence of (Co), (Ni), Pd, Pt complexes. J Mol Spectrosc 35(3):359–375Google Scholar
  65. 65.
    Erskine RW, Field BO (1976) Reversible oxygenation. Struc Bond 28:1–50Google Scholar
  66. 66.
    Esipova TV, Karagodov A, Miller J, Wilson DF, Busch TM, Vinogradov SA (2011) Two New “protected” oxyphors for biological oximetry: properties and application in tumor imaging. Anal Chem 83(22):8756–8765Google Scholar
  67. 67.
    Fabricius-Dyg J, Mistlberger G, Staal M, Borisov SM, Klimant I, Kühl M (2012) Imaging of surface O2 dynamics in corals with magnetic micro optode particles. Mar Biol 159(7):1621–1631Google Scholar
  68. 68.
    Feng N, Xie J, Zhang D (2010) Synthesis, characterization, photophysical and oxygen-sensing properties of a novel europium(III) complex. Spectrochim Acta A 77(1):292–296Google Scholar
  69. 69.
    Fercher A, Borisov SM, Zhdanov AV, Klimant I, Papkovsky DB (2011) Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles. ACS Nano 5(7):5499–5508Google Scholar
  70. 70.
    Filatov MA, Cheprakov AV (2011) The synthesis of new tetrabenzo- and tetranaphthoporphyrins via the addition reactions of 4,7-dihydroisoindole. Tetrahedron 67(19):3559–3566Google Scholar
  71. 71.
    Finikova OS, Aleshchenkov SE, Brñas RP, Cheprakov AV, Carroll PJ, Vinogradov SA (2005) Synthesis of symmetrical tetraaryltetranaphtho[2,3]porphyrins. J Org Chem 70(12):4617–4628Google Scholar
  72. 72.
    Finikova OS, Cheprakov AV, Carroll PJ, Vinogradov SA (2003) Novel route to functionalized tetraaryltetra[2,3]naphthaloporphyrins via oxidative aromatization. J Org Chem 68:7517–7520Google Scholar
  73. 73.
    Finikova OS, Cheprakov AV, Vinogradov SA (2005) Synthesis and luminescence of soluble meso-unsunbstituted tetrabenzo- and tetranaphtho[2,3]porphyrins. J Org Chem 70:9562–9572Google Scholar
  74. 74.
    Finikova OS, Lebedev AY, Aprelev A, Troxler T, Gao F, Garnacho C, Muro S, Hochstrasser RM, Vinogradov SA (2008) Oxygen microscopy by two-photon-excited phosphorescence. ChemPhysChem 9(12):1673–1679Google Scholar
  75. 75.
    Fischer JPWF (2010) A novel planar optode setup for concurrent oxygen and light field imaging: application to a benthic phototrophic community. Limnol Oceanogr Meth 8:254–268Google Scholar
  76. 76.
    Fischer LH, Borisov SM, Schaeferling M, Klimant I, Wolfbeis OS (2010) Dual sensing of pO2 and temperature using a water-based and sprayable fluorescent paint. Analyst 135:1224–1229Google Scholar
  77. 77.
    Fischer LH, Stich MIJ, Wolfbeis OS, Tian N, Holder E, Schäferling M (2009) Red- and green-emitting iridium(III) complexes for a Dua barometric and temperature-sensitive paint. Chem Eur J 15:10857–10863Google Scholar
  78. 78.
    Fujiwara Y, Amao Y (2004) Novel optical oxygen sensing material: 1-pyrenedecanoic acid and perfuorodecanoic acid chemisorbed onto anodic oxidized aluminium plate. Sens Actuators B 99:130–133Google Scholar
  79. 79.
    Ge X, Hanson M, Shen H, Kostov Y, Brorson KA, Frey DD, Moreira AR, Rao G (2006) Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. J Biotechnol 122(3):293–306Google Scholar
  80. 80.
    Gernot TJ, Klimant I, Wittmann C, Heinzle E (2003) Integrated optical sensing of dissolved oxygen in microtiter plates: a novel tool for microbial cultivation. Biotechnol Bioeng 81(7):829–836Google Scholar
  81. 81.
    Ghosh RN, Askeland PA, Kramer S, Loloee R (2011) Optical dissolved oxygen sensor utilizing molybdenum chloride cluster phosphorescence. Appl Phys Lett 98:221103–3Google Scholar
  82. 82.
    Ghosh RN, Baker GL, Ruud C, Nocera D (1999) Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence. Appl Phys Lett 75(19):2885–2887Google Scholar
  83. 83.
    Gillanders RN, Tedford MC, Crilly PJ, Bailey RT (2005) A composite thin film optical sensor for dissolved oxygen in contaminated aqueous environments. Anal Chem Acta 545:189–194Google Scholar
  84. 84.
    Glud RN, Kühl MRN (1999) Heterogeneity of oxygen production and consumption in a photosynthetic microbial mat as studied by planar optodes. J Phycol 35:270–279Google Scholar
  85. 85.
    Glud RN, Ramsing NB, Gundersen JK, Klimant I (1996) Planar optrodes: a new tool for fine scale measurements of two dimensional O2 distribution in bethic communities. Mar Ecol Prog Ser 140:217–226Google Scholar
  86. 86.
    Glud RN, Tengberg A, Kühl M, Hall POJ, Klimant I (2001) An in situ instrument for planar O2 optode measurements at benthic interfaces. Limnol Ocenogr 46(8):2073–2080Google Scholar
  87. 87.
    Guo L, Ni Q, Li J, Zhang L, Lin X, Xie Z, Chen G (2008) A novel sensor based on the porous plastic probe for determitation of dissolved oxygen in seawater. Talanta 74:1032–1037Google Scholar
  88. 88.
    Haitao J, Huilin Y, Fan L, Yang L (2012) Fabrication and performances of an optical sensor system constructed by a novel Cu(I) complex embedded on silica matrix. J Lumin 132:198–204Google Scholar
  89. 89.
    Hanson MA, Ge X, Kostov Y, Brorson KA, Moreira AR, Rao G (2007) Comparisons of optical pH and dissolved oxygen sensors with traditional electrochemical probes during mammalian cell culture. Biotechnol Bioeng 97(4):833–841Google Scholar
  90. 90.
    Hanson K, Tamayo A, Diev VV, Whited MT, Djurovich PI, Thompson ME (2010) Efficient dipyrrin-centered phosphorescence at room temperature from bis-cyclometalated iridium(III) dipyrrinato complexes. Inorg Chem 49(13):6077–6084Google Scholar
  91. 91.
    Hartmann P, Leiner MJP, Lippitsch ME (1995) Luminescence quenching behavior of an oxygen sensor based on a Ru(II) complex dissolved in polystyrene. Anal Chem 67(1):88–93Google Scholar
  92. 92.
    Hartmann P, Ziegler W, Holst G, Lübbers DW (1997) Oxygen flux fluorescence lifetime imaging. Sens Actuators B 38:110–115Google Scholar
  93. 93.
    He H, Fraatz RJ, Leiner MJP, Rehn MM, Tusa JK (1995) Selection of silicone polymer matrix for optical gas sensing. Sens Actuators B 29:246–250Google Scholar
  94. 94.
    Higgins C, Wencel D, Burke CS, MacCraith BD, McDonagh C (2007) Novel hybrid optical sensor materials for in-breath O2 analysis. Analyst 133:241–247Google Scholar
  95. 95.
    Holst G, Grundwald B (2001) Luminescence lifetime imaging with transparent oxygen optodes. Sens Actuators B 74:78–90Google Scholar
  96. 96.
    Holst G, Kohls O, Klimant I, König B, Kühl M, Richter T (1998) A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples. Sens Actuators B 51:163–170Google Scholar
  97. 97.
    Imasaka T, Ishibashi K, Ishibashi N (1982) Time-resolved fluorimetry with a sub-nanosecond dye laser source for the determination of polynuclear aromatic hydrocarbons after separation by high-performance liquid chromatography. Anal Chim Acta 142:1–12Google Scholar
  98. 98.
    Jensen ST, Kühl M, Glud RN, Jørgensen BB, Prieme A (2005) Oxic microzones and radial oxygen loss from roots of Zostera marina. Mar Ecol Prog Ser 293:49–58Google Scholar
  99. 99.
    Jones PF (1968) On the use of phosphorescence quenching for determining permeabilities of polymeric films to gases. J Polym Sci B Polym Lett 6(7):487–491Google Scholar
  100. 100.
    Kautsky H (1939) Quenching of luminescence by oxygen. Trans Faraday Soc 35:216–219Google Scholar
  101. 101.
    Kellner K, Liebsch G, Klimant I, Wolfbeis OS, Blunk T, Schulz MB, Göpferich A (2002) Determination of oxygen gradients in engineered tissue using a fluorescent sensor. Biotechnol Bioeng 80(1):73–83Google Scholar
  102. 102.
    Khalil G, Gouterman M, Ching S, Costin C, Coyle L, Gouin S, Green E, Sadilek M, Wan R, Yearyean J, Zelelow B (2002) Synthesis and spectroscopic characterization of Ni, Zn, Pd and Pt tetra(pentafuorophenyl)porpholactone with comparison to Mg, Zn, Y, Pd and Pt metal complexes of tetra(pentafuorophenyl)porphine. J Porphyrins Phthalocynines 6:135–145Google Scholar
  103. 103.
    Klimant I, Belser P, Wolfbeis OS (1994) Novel metal-organic ruthenium(II) diimin complexes for use as longwave excitable luminescent oxygen probes. Talanta 41(6):985–991Google Scholar
  104. 104.
    Klimant I, Kühl M, Glud R, Holst G (1997) Optical measurement of oxygen and temperature in microscale: strategies and biological applications. Sens Actuators B 38(1–3):29–37Google Scholar
  105. 105.
    Klimant I, Meyer V, Kühl M (1995) Fiberoptic oxygen microsensors, a new tool in aquatic biology. Limnol Oceanogr 40:1159–1165Google Scholar
  106. 106.
    Klimant I, Ruckruh F, Liebsch G, Stangelmayer A, Wolfbeis OS (1999) Fast response oxygen micro-optodes based on novel soluble ormosil glasses. Mikrochim Acta 131(1):35–46Google Scholar
  107. 107.
    Klimant I, Wolfbeis OS (1995) Oxygen-sensitive luminescent materials based on silicone-soluble ruthenium diimine complexes. Anal Chem 67:3160–3166Google Scholar
  108. 108.
    Knopp JA, Longmuir IS (1972) Intracellular measurement of oxygen by quenching of fluorescence of pyrenebutyric acid. Biochim Biophys Acta 279:393–397Google Scholar
  109. 109.
    Kober EM, Caspar JV, Lumpkin RS, Meyer TJ (1986) Application of the energy gap law to excited-state decay of osmium(II)-polypyridine complexes: calculation of relative nonradiative decay rates from emission spectral profiles. J Phys Chem 90(16):3722–3734Google Scholar
  110. 110.
    Kocincova AS, Nagl S, Arain S, Krause C, Borisov SM, Arnold M, Wolfbeis OS (2008) Multiplex bacterial growth monitoring in 24-well microplates using a dual optical sensor for dissolved oxygen and pH. Biotechnol Bioeng 100(no. 3):430–438Google Scholar
  111. 111.
    Kolle C, Gruber W, Trettnak WBK, Dolezal C, Reininger F (1997) Fast optochemical sensor for continuous monitoring of oxygen in breath-gas analysis. Sens Actuators B 38–39:141–149Google Scholar
  112. 112.
    König B, Kohls O, Holst G, Glud RN, Kühl M (2005) Fabrication and test of sol–gel based planar oxygen optodes for use in aquatic sediments. Mar Chem 97:262–276Google Scholar
  113. 113.
    Koo Y-EL, Cao Y, Kopelman R, Koo SM, Brasuel M, Philbert MA (2004) Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal Chem 76(9):2498–2505Google Scholar
  114. 114.
    Koren K, Borisov SMKI (2012) Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium (II) porphyrins—a convenient way to eliminate dye migration and leaching. Sens Actuators B 169:173–181Google Scholar
  115. 115.
    Koren K, Borisov SM, Saf R, Klimant I (2011) Strongly phosphorescent iridium(III)-porphyrins—new oxygen indicators with tuneable photophysical properties and functionalities. Eur J Inorg Chem 2011(no. 10):1531–1534Google Scholar
  116. 116.
    Koren K, Dmitriev RI, Borisov SM, Papkovsky DB, Klimant I (2012) Complexes of IrIII-octaethylporphyrin with peptides as probes for sensing cellular O2. ChemBioChem 13(8):1184–1190Google Scholar
  117. 117.
    Köse ME, Crutcheley RJ, DeRosa MC, Ananthakrishnan N, Reynolds JR, Schanze KS (2005) Morphology and oxygen sensor response of luminescent Ir-labeled poly(dimethylsiloxane)/polystyrene polymer blend films. Langmuir 21:8255–8262Google Scholar
  118. 118.
    Kostov Y, Harms P, Pilato RS, Rao G (2000) Ratiometric oxygen sensing: detection of dual-emission ratio through a single emission filter. Analyst 125(6):1175–1178Google Scholar
  119. 119.
    Kuhl Y, Cohen T, Dalsgaard B, Jorgensen B, Reversbech NP (1995) Microenvironment and photosynthesis of zooxanthellea in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172Google Scholar
  120. 120.
    Kühl G, Larkum AWD, Ralph P (2008) Imaging of oxygen dynamics within the endolithic algal community of the massive coral porites lobata. J Phycol 44:541–550Google Scholar
  121. 121.
    Kühl M, Polerecky L (2008) Functional and structural imaging of phototrophic microbial communities and symbioses. Aquat Microb Ecol 53:99–118Google Scholar
  122. 122.
    Kunkely H, Vogler A (1990) Photoluminescence of platinum complex [PtII(4,7-diphenyl-1,10-phenanthroline)(CN)2] in solution. J Am Chem Soc 112(14):5625–5627Google Scholar
  123. 123.
    Lai S-W, Hou Y-J, Che C-M, Pang H-L, Wong K-Y, Chang CK, Zhu N (2004) Electronic spectroscopy, photophysical properties, and emission quenching studies of an oxydatively robust perfuorinated platinum porphyrin. Inorg Chem 43:3724–3732Google Scholar
  124. 124.
    Lakowicz JR (2006) Principle of fluorescence spectroscopy. Springer, BaltimoreGoogle Scholar
  125. 125.
    Lakowicz JR, Berndt K (1991) Lifetime-selective fluorescence imaging using a RF phase sensitive camera. Rev Sci Instrum 62:1727–1734Google Scholar
  126. 126.
    Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee H-E, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J Am Chem Soc 123(18):4304–4312Google Scholar
  127. 127.
    Larkum A, Koch E, Kühl M (2003) Diffusive boundary layers and photosynthesis of teh epilithic algal community of coral reefs. Mar Biol 142:1073–1082Google Scholar
  128. 128.
    Larsen M, Borisov SM, Grundwald B, Klimant I, Glud RN (2011) A simle and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing. Limnol Oceanogr Meth 9:348–360Google Scholar
  129. 129.
    Law G-L, Pal R, Palsson LO, Parker D, Wong K-L (2009) Responsive and reactive terbium complexes with an azaxanthone sensitiser and one naphthyl group: applications in ratiometric oxygen sensing in vitro and in regioselective cell killing. Chem Commun 47:7321–7323Google Scholar
  130. 130.
    Lebedev AY, Cheprakov AV, Sakadzic S, Boas DA, Wilson DF, Vinogradov SA (2009) Dendritic phosphorescent probes for oxygen imaging in biological systems. ACS Appl Mater Interfaces 1(6):1292–1304Google Scholar
  131. 131.
    Lecoq J, Parpaleix A, Roussakis E, Ducros M, Houssen YG, Vinogradov SA, Charpak S (2011) Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat Med 17(7):893–898Google Scholar
  132. 132.
    Lee S-K, Okura I (1997) Optical sensor for oxygen using a porphyrin-doped sol–gel glass. Analyst 122:81–84Google Scholar
  133. 133.
    Lee S-K, Okura I (1997) Porphyrin-doped sol–gel glass as a probe for oxygen sensing. Anal Chem Acta 342:181–188Google Scholar
  134. 134.
    Lee S-K, Okura I (1997) Photostable optical oxygen sening material: platinum tetrakis(pentafluorophenyl)porphyrin immobilized in polystyrene. Anal Comm 34:185–188Google Scholar
  135. 135.
    Lee Y-EK, Ulbrich EE, Kim G, Hah H, Strollo C, Fan W, Gurjar R, Koo S, Kopelman R (2010) Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity. Anal Chem 82(20):8446–8455Google Scholar
  136. 136.
    Li X, Rosenzweig Z (1997) A fiber optic sensor for rapid analysis of bilirubin in serum. Anal Chim Acta 353:263–273Google Scholar
  137. 137.
    Li L, Walt DR (1995) Dual-analyte fiber-optic sensor for the simultaneous and continuous measurement of glucose and oxygen. Anal Chem 67(20):3746–3752Google Scholar
  138. 138.
    Li S, Zhao X (2011) Oxygen sensing nanofibers doped with red-emitting Eu(III) complex: synthesis, characterization, machanism, and sensing performance. Synth Met 161:737–742Google Scholar
  139. 139.
    Liebsch G, Klimant I, Frank B, Holst G, Wolfbeis OS (2000) Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensors. Appl Spectrosc 54(4):548–559Google Scholar
  140. 140.
    Liebsch G, Klimant I, Wolfbeis OS (1999) Luminescence lifetime temperature sensing based on sol–gels and poly(acrylonitrile)s dyed with ruthenium metal–ligand complexes. Adv Mater 11(15):1296–1299Google Scholar
  141. 141.
    Lin C-T, Böttcher M, Creutz C, Sutin N (1976) Mechanism of the quenching of the emission of substituted polypyridineruthenium(II) complexes by Iron(III), chromium(III) and europium(III) ions. J Am Chem Soc 98:6536–6544Google Scholar
  142. 142.
    Lippitsch ME, Pusterhofer J, Leiner MJP, Wolfbeis OS (1988) Fibre-optic oxygen sensor with the fluorescence decay time as the infomation carrier. Anal Chim Acta 205:1–6Google Scholar
  143. 143.
    Liu Y, Guo H, Zhao J (2011) Ratiometric luminescent molecular oxygen sensors based on uni-luminophores of C[caret]N Pt(II)(acac) complexes that show intense visible-light absorption and balanced fluorescence/phosphorescence dual emission. Chem Comm 47(41):11471–11473Google Scholar
  144. 144.
    Liu Y-M, Pereoro-Garcia R, Valencia-Gonzalez MJ, Diaz-Gracia ME, Sanz-Medel A (1994) Evaluation of some immobilized room-temperature phosphorescent metal chelates as sensing materials for oxygen. Anal Chem 66:836–840Google Scholar
  145. 145.
    Liu X, Sun W, Zou L, Xie Z, Li X, Lu C, Wang L, Cheng Y (2012) Neutral cuprous complexes as ratiometric oxygen gas sensors. Dalton Trans 41(4):1312–1319Google Scholar
  146. 146.
    Lo L-W, Koch CJ, Wilson DF (1996) Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra(4-carboxyphenyl)porphine: a phosphor with general application for measuring oxygen concentration in biological systems. Anal Biochem 236:153–160Google Scholar
  147. 147.
    MacCraith BD, Mc Donagh CM, O’Keffe G, Keyes ET, Vos JG, O’Kelly B, McGilp JF (1993) Fibre optic oxygen sensor based on fluorescence quenching of evanescent-wave excited ruthenium complexes in sol–gel derived porous coatings. Analyst 118:385–388Google Scholar
  148. 148.
    Mack J, Asano Y, Kobayashi N, Stillman MJ (2005) Application of MCD spectroscopy and TD-DFT to a highly non-planar porphyrinoid ring system. New insights on red-shifted porphyrinoid spectral bands. J Am Chem Soc 127(50):17697–17711Google Scholar
  149. 149.
    Mak CSK, Pentlehner D, Stich M, Wolfbeis OS, Chan WK, Yersin H (2009) Exceptional oxygen sensing capabilities and triplet state properties of Ir(ppy-NPh2)3. Chem Mater 21(11):2173–2175Google Scholar
  150. 150.
    Marazuela MD, Moreno-Bondi MC (1998) Determination of choline-containing phospholipids in serum with a fiber-optic biosensor. Anal Chim Acta 374(1):19–29Google Scholar
  151. 151.
    Mayr T, Borisov SM, Abel T, Enko BWK, Mistlberger G, Klimant I (2009) Light harvesting as a simple and versatile way to enhance brightness of luminescent sensors. Anal Chem 81:6541–6545Google Scholar
  152. 152.
    McDonagh C, Bowe P, Mongey KMBD (2002) Characterization of porosity and sensor response times of sol–gel-derived thin films for oxygen sensor application. J Non-Cryst Solids 306:138–148Google Scholar
  153. 153.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108(2):400–422Google Scholar
  154. 154.
    Mcevoy AK, McDonagh C, MacCraith BD (1997) Optimization of sol–gel-derived silica films for optical oxygen sensing. J Sol-Gel Sci Technol 8:1121–1125Google Scholar
  155. 155.
    McLaurin EJ, Greytak AB, Bawendi MG, Nocera DG (2009) Two-photon absorbing nanocrystal sensors for ratiometric detection of oxygen. J Am Chem Soc 131:12994–13001Google Scholar
  156. 156.
    McLean TM, Moody JL, Waterland MR, Telfer SG (2012) Luminescent rhenium(I)-dipyrrinato complexes. Inorg Chem 51:446–455Google Scholar
  157. 157.
    Medina-Castillo AL, Fernandez-Sanchez JF, Klein C, Nazeeruddin MK, Segura-Carretero A, Fernandez-Gutierrez A, Graetzel M, Spichiger-Keller UE (2007) Engineering of efficient phosphorescent iridium cationic complex for developing oxygen-sensitive polymeric and nanostructured films. Analyst 132(9):929–936Google Scholar
  158. 158.
    Meier RJ, Schreml S, Wang X-d, Landthaler M, Babilas P, Wolfbeis OS (2011) Simultaneous photographing of oxygen and pH in vivo using sensor films. Angew Chem Int Ed 50(no. 46):10893–10896Google Scholar
  159. 159.
    Meier B, Werner T, Klimant I, Wolfbeis OS (1995) Novel oxygen sensor material based on a ruthenium bipyridyl complex encapsulated in zeolite Y: dramatic differences in the efficiency of luminescence quenching by oxygen on going from surface-adsorbed to zeolite-encapsulated fluorophores. Sen Actuators B 29:240–245Google Scholar
  160. 160.
    Millikan GA (1942) The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man. Rev Sci Instr 13(10):434–444Google Scholar
  161. 161.
    Mills A (1999) Response characteristics of optical sensors for oxygen: a model based on a distribution in [small tau]oand kq. Analyst 124(9):1309–1314Google Scholar
  162. 162.
    Mills A, Lawrie K, Bardin J, Apedalie A, Skinner GA, O’Rouke C (2012) An O2 smart plastic film for packaging. Analyst 137:106–112Google Scholar
  163. 163.
    Mills A, Lepre A, Theobald BRC, Slade E, Murrer BA (1997) Use of luminescent gold compounds in the design of thin-film oxygen sensors. Anal Chem 69:2842–2847Google Scholar
  164. 164.
    Mills A, Thomas M (1997) Fluorescence-based thin plastic film ion-pair sensors for oxygen. Analyst 122:63–68Google Scholar
  165. 165.
    Mills A, Tommons C, Bailey RT, Crilly P, Tedford MC (2011) Thin-film oxygen sensors using a luminescent polynuclear gold(I) complex. Anal Chem Acta 702:269–273Google Scholar
  166. 166.
    Mingoarranz FJ, Moreno-Bondi MC, Garcia-Fresnadillo D, de Dios C, Orellana G (1995) Oxygen-sensitive layers for optical fibre devices. Mikrochim Acta 121:107–118Google Scholar
  167. 167.
    Mitsubayashi K, Kon T, Hashimoto Y (2003) Optical bio-sniffer for ethanol vapor using an oxygen-sensitive optical fiber. Biosens Bioelectron 19(3):193–198Google Scholar
  168. 168.
    Morin AM, Xu W, Demas JN, DeGraff BA (2000) Oxygen sensors based on quenching of tris-(4,7-diphenyl-1.10-phenanthroline)ruthenium(II) in fluorinated polymers. J Fluoresc 10:7–12Google Scholar
  169. 169.
    Nagl S, Baleizao C, Borisov SM, Schäferling M, Barberan MN, Wolfbeis OS (2007) Optical sensing and imaging of trace oxygen with record response. Angew Chem Int Ed 46:2317–2319Google Scholar
  170. 170.
    Napp J, Behnke T, Fischer L, Würth C, Wottawa M, Katschinski DM, Alves F, Resch-Genger U, Schäferling M (2011) Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 83:9039–9046Google Scholar
  171. 171.
    Neugebauer U, Pellegrin Y, Devocelle M, Forster RJ, Signac W, Moran N, Keyes TE (2008) Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging. Chem Commun 42(42):5307–5309Google Scholar
  172. 172.
    Niedermair F, Borisov SM, Zenkl G, Hofmann OT, Weber H, Saf R, Klimant I (2010) Tunable phosphorescent NIR oxygen indicators based on mixed benzo- and naphthoporphyrin complexes. Inorg Chem 49(no. 20):9333–9342Google Scholar
  173. 173.
    Nock V, Blaikie RJ, David T (2008) Patterning, integration and characterization of polymer optical oxygen sensors for microfluidics devices. Lab Chip 8:1300–1307Google Scholar
  174. 174.
    O’Riordan TC, Zhdanov AV, Ponomarev GV, Papkovsky DB (2007) Analysis of intracellular oxygen and metabolic responses of mammalian cells by time-resolved fluorometry. Anal Chem 79(24):9414–9419Google Scholar
  175. 175.
    Okazaki T, Imasaka T, Ishibashi N (1988) Optical-fiber sensor based on the second-harmonic emission of a near-infrared semiconductor laser as light source. Anal Chim Acta 209:327–331Google Scholar
  176. 176.
    Opitz N, Graf H-J, Lübbers DW (1988) Oxygen sensor for the temperature range 300 to 500 K based on fluorescence quenching of indicator-treated silicone rubber membranes. Sens Actuators 13(2):159–163Google Scholar
  177. 177.
    Papkovsky DB (1995) New oxygen sensors and their application to biosensing. Sens Actuators B 29(1–3):213–218Google Scholar
  178. 178.
    Papkovsky DB, Olah J, Troyanovsky IV, Sadovsky NA, Rumyantseva VD, Mironov AF, Yaropolov AI, Savitsky AP (1992) Phosphorescent polymer films for optical oxygen sensors. Biosens Bioelectron 7(3):199–206Google Scholar
  179. 179.
    Papkovsky DB, Ponomarev GV, Trettnak W, O’Leary P (1995) Phosphorescent complexes of phorphyrin ketones: optical properties and application to oxygen sensing. Anal Chem 67:4112–4117Google Scholar
  180. 180.
    Park EJ, Reid KR, Tang W, Kennedy RT, Kopelman R (2005) Ratiometric fiber optic sensors for the detection of inter- and intra-cellular dissolved oxygen. J Mater Chem 15(27–28):2913–2919Google Scholar
  181. 181.
    Pasic A, Koehler H, Klimant I, Schaupp L (2007) Miniaturized fiber-optic hybrid sensor for continuous glucose monitoring in subcutaneous tissue. Sens Actuators B 122:60–68Google Scholar
  182. 182.
    Pasic A, Koehler H, Schaupp L, Pieber T, Klimant I (2006) Fiber-optic flow-through sensor for online monitoring of glucose. Anal Bioanal Chem 386(5):1293–1302Google Scholar
  183. 183.
    Peterson JI, Fitzgerald RV, Buckhold DK (1984) Fiber-optic probe for in vivo measurement of oxygen partial pressure. Anal Chem 56(1):62–67Google Scholar
  184. 184.
    Polerecky L, Lott C, Weber M (2008) In situ measurement of gross photosynthesis using a microsensor-based light-shade shift method. Limnol Oceanogr Meth 6:373–383Google Scholar
  185. 185.
    Pollack M, Pringsheim P, Terwoord D (1944) A method for determining small quantities of oxygen. J Chem Phys 12(7):295–299Google Scholar
  186. 186.
    Puklin E, Carlson B, Gouin S, Costin C, Green E, Ponomarev S, Tanji H, Gouterman M (2000) Ideality of pressure-sensitive paint. I. Platinum tetra(pentafluorophenyl)porphine in fluoroacrylic polymer. J Appl Polym Sci 77:2795–2804Google Scholar
  187. 187.
    Roberts L, Lines R, Reddy S, Hay J (2011) Investigation of polyviologens as oxygen indicators in food packaging. Sens Actuators B 152:63–67Google Scholar
  188. 188.
    Rogers JE, Nguyen KA, Hufnagle DC, McLean DG, Su W, Gossett KM, Burke AR, Vinogradov SA, Pachter R, Fleitz PA (2003) Observation and interpretation of annulated porphyrins: studies on the photophysical properties of meso-tetraphenylmetalloporphyrins. J Phys Chem A 107(51):11331–11339Google Scholar
  189. 189.
    Röösli S, Pretsch E, Morf WE, Tsuchida E, Nishide H (1997) Selective optical response to oxygen of membranes based on immobilized cobalt(II) porphyrins. Anal Chim Acta 338:119–125Google Scholar
  190. 190.
    Rosenow TC, Walzer K, Leo K (2008) Near-infrared organic light emitting diodes based on heavy metal phthalocyanines. J Appl Phys 103(no. 4):043105Google Scholar
  191. 191.
    Rozhkov VV, Khajehpour M, Vinogradov SA (2003) Luminescent Zn and Pd tetranaphthaloporphyrins. Inorg Chem 42(14):4253–4255Google Scholar
  192. 192.
    Rumsey WL, Vanderkooi JM, Wilson DF (1988) Imaging of phosphorescence: a novel method for measuring oxygen distribution in perfused tissue. Science 241(4873):1649–1651Google Scholar
  193. 193.
    Sacksteder L, Demas JN, DeGraff BA (1993) Design of oxygen sensors based on quenching of luminescent metal complexes: effect of ligand size on heterogeneity. Anal Chem 65(23):3480–3483Google Scholar
  194. 194.
    Sacksteder L, Lee M, Demas JN, DeGraff BA (1993) Long-lived, highly luminescent rhenium(I) complexes as molecular probes: intra- and intermolecular excited-state interactions. J Am Chem Soc 115(18):8230–8238Google Scholar
  195. 195.
    Sakadzic S, Roussakis E, Yaseen MA, Mandeville ET, Srinivasan VJ, Arai K, Ruvinskaya S, Devor A, Lo EH, Vinogradov SA, Boas DA (2010) Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat Meth 7(9):755–759Google Scholar
  196. 196.
    Schäferling M (2012) The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed Engl 51(15):3532–3554Google Scholar
  197. 197.
    Schaffar BPH, Wolfbeif OS (1990) A fast responding fibre optic glucose biosensor based on an oxygen optrode. Biosens Bioelectron 5(2):137–148Google Scholar
  198. 198.
    Schmälzlin E, van Dongen JT, Klimant I, Marmodee B, Steup M, Fisahn J, Geigenberger P, Löhmannsröben H-G (2005) An optical multifrequency phase-modulation method using microbeads for measuring intracellular oxygen concentration in plants. Biophys J 89:1339–1345Google Scholar
  199. 199.
    Schneider K, Schütz V, John G, Heinzle E (2010) Optical device for parallel online measurement of dissolved oxygen and pH in shake flask cultures. Bioprocess Biosyst Eng 33(5):541–547Google Scholar
  200. 200.
    Schreml S, Meier RJ, Wolfbeis OS, Maisch T, Szeimies RM, Landthaler M, Regensburger J, Santarelli F, Klimant I, Babilas P (2011) 2D luminescence imaging of phystiological wound oxygenation. Exp Dermatol 20(7):550–554Google Scholar
  201. 201.
    Schrenkhammer P, Wolfbeis OS (2008) Fully reversible optical biosensors for uric acid using oxygen transduction. Biosens Bioelectron 24:994–999Google Scholar
  202. 202.
    Schröder CR, Polerecky L, Klimant I (2007) Time-resolved pH/pO2 mapping with luminescent hybrid sensors. Anal Chem 79(1):60–70Google Scholar
  203. 203.
    Severinghaus JW, Honda Y (1987) History of blood gas analysis. VII. Pulse oximetry. J Clin Monit 3:135–138Google Scholar
  204. 204.
    Shaw G (1967) Quenching by oxygen diffusion of phosphorescence emission of aromatic molecules in polymethyl methacrylate. Trans Faraday Soc 63:2181–2189Google Scholar
  205. 205.
    Smith CS, Branham CW, Marquardt BJ, Mann KR (2010) Oxygen gas sensing by luminescence quenching in crystals of Cu(xantphos)(phen) + complexes. J Am Chem Soc 132:14079–14085Google Scholar
  206. 206.
    Smith CS, Mann KR (2012) Exceptionally long-lived luminescence from [Cu(I)(isocyanide)2(phen)] + complexes in nanoporous crystals enables remarkable oxygen gas sensing. J Am Chem Soc 134(21):8786–8789Google Scholar
  207. 207.
    Sommer JR, Farley RT, Graham KR, Yang Y, Reynolds JR, Xue J, Schanze KS (2009) Efficient near-infrared polymer and organic light-emitting diodes based on electrophosphorescence from (tetraphenyltetranaphtho[2,3]porphyrin)platinum(II). ACS Appl Mater Interfaces 1(2):274–278Google Scholar
  208. 208.
    Songzhu L, Xiangting D, Jinxian W, Guixia L, Wenshen Y, Roukun J (2010) Fabrication of Eu(III) complex doped nanofibrous membrane and their oxygen-sensitive properties. Spectrochim Acta A 77:885–889Google Scholar
  209. 209.
    Spellane PJ, Gouterman M, Kim AAS, Liu YC (1980) Porphyrins 40. Electronic spectra and four-orbital energies of free-base, zinc, copper, and palladium tertrakis(perfluorophenyl)porphyrins. Inorg Chem 19:386–391Google Scholar
  210. 210.
    Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40(9):4805–4839Google Scholar
  211. 211.
    Steunenberg P, Ruggi A, van den Berg NS, Buckle T, Kuil J, Fijs WB, Velders AH (2012) Phosphorescence imaging of living cells with amino acid-functionalized tris(2-phenylpyridine)iridium(III) complexes. Inorg Chem 51(no. 4):2105–2114Google Scholar
  212. 212.
    Stich MI, Borisov SM, Henne U, Schäferling M (2009) Read-out of multiple optical chemical sensors by means of digital color cameras. Sens Actuators B 139(1):204–207Google Scholar
  213. 213.
    Stubenrauch K, Sandholzer M, Niedermair F, Waich K, Mayr T, Klimant I, Trimmel G, Slugovc C (2008) Poly(norbornene)s as matrix materials for platinum tetrakis(pentafuorophenyl)porphyrin based optica oxygen sensors. Eur Polym J 44:2558–2566Google Scholar
  214. 214.
    Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16:121–131Google Scholar
  215. 215.
    Thomas P, Halter M, Tona A, Raghavan SR, Plant AL, Forry S (2009) A noninvasive thin film sensor for monitoring oxygen tension during in vitro cell culture. Anal Chem 81(22):9239–9246Google Scholar
  216. 216.
    Tian Y, Shumway BR, Meldrum DR (2010) A New cross-linkable oxygen sensor covalently bonded into poly(2-hydroxyethyl methacrylate)-co-polyacrylamide thin film for dissolved oxygen sensing. Chem Mater 22(6):2069–2078Google Scholar
  217. 217.
    Trettnak W, Kolle C, Reininger F, Dolezal C, O’Leary P (1996) Miniaturized luminescence lifetime-based oxygen sensor instrumentation utilizing a phase modulation technique. Sens Actuators B 35–36:506–512Google Scholar
  218. 218.
    Trettnak W, Leiner MJP, Wolfbeis OS (1988) Optical sensors. Part 34. Fibre optic glucose biosensor with an oxygen optrode as the transducer. Analyst 113(10):1519–1523Google Scholar
  219. 219.
    Tusa JK, He H (2005) Critical care analyzer with fluorescent optical chemosensors for blood analytes. J Mater Chem 15(27–28):2640–2647Google Scholar
  220. 220.
    Van Houten KA, Walters KA, Schanze KS, Pilato RS (2000) Study of the heterocyclic-substituted platinum-1,2-enedithiolate 3ILCT excited states by transient absorption spectroscopy. J Fluoresc 10(1):35–40Google Scholar
  221. 221.
    Vasil’ev VV, Borisov SM (2002) Optical oxygen sensors based on phosphorescent water-soluble platinum metals porphyrins immobilized in perfluorinated ion-exchange membrane. Sensors Actuators B 82(no. 2-3):272–276Google Scholar
  222. 222.
    Vasil’ev VV, Borisov SM, Chubarova YO, Rumyantseva VD (2003) Dimerization, aggregation, and luminescent properties of palladium(II) and platinum(II) complexes with meso-tetrakis(4-carboxyphenyl)porphyrin. Russ J Inorg Chem 48(no. 3):385–390Google Scholar
  223. 223.
    Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644Google Scholar
  224. 224.
    Voraberger HS, Kreimaier H, Biebernik K, Kern W (2001) Novel oxygen optrode withstanding autoclavation: technical solutions and performance. Sens Actuators B 74:179–185Google Scholar
  225. 225.
    Wang X, Chen H, Zhou T, Lin Z, Zeng J, Xie Z, Chen X, Wong K, Chen G, Wang X (2009) Optical colorimetric sensor strip for direct readout glucose measurement. Biosens Bioelectron 24(12):3702–3705Google Scholar
  226. 226.
    Wang Y, Li B, Zhang L, Zuo Q, Li P, Zhang J, Su Z (2011) High-performance oxygen sensors based on EuIII complex/polystyrene composite nanofibrous memabranes prepared by electrospinning. Chem Phys Chem 12:349–355Google Scholar
  227. 227.
    Wang Z, McWilliams AR, Evans CEB, Lu X, Chung S, Winnik MA, Manners I (2002) Covalent attachment of RuII phenanthroline complexes to polythionylphosphazenes: the development and evaluation of single-component polymeric oxygen sensors. Adv Funct Mater 12(6–7):415–419Google Scholar
  228. 228.
    Wang X, Meier RJ, Link M, Wolfbeis OS (2010) Photographing oxygen distribution. Angew Chem Int Edit 49(29):4907–4909Google Scholar
  229. 229.
    Wang XF, Uchida T, Coleman DM, Minami S (1991) A two dimensional fluorescence lifetime imaging system using a gated image intesifier. Appl Spectrosc 45:360–366Google Scholar
  230. 230.
    Wang X, Zhou T, Chen X, Wong K, Wang X (2008) An optical biosensor for the rapid determination of glucose in human serum. Sens Actuators B 129(2):866–873Google Scholar
  231. 231.
    Wenzhöfer F, Glud RN (2004) small-scale spatial and temporal variability in coastal benthic O2 dynamics: effects of fauna activity. Limnol Oceanogr 49(5):1471–1481Google Scholar
  232. 232.
    Werner T, Klimant I, Huber C, Krause C, Wolfbeis OS (1999) Fiber optic ion-microsensors based on luminescence lifetime. Mikrochim Acta 131(1):25–28Google Scholar
  233. 233.
    Wilhem S, Wolfbeis O (2011) Irreversible sensing of oxygen ingress. Biosens Actuators B 153:199–204Google Scholar
  234. 234.
    Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal Chem 78(12):3859–3874Google Scholar
  235. 235.
    Wolfbeis OS, Leiner PMJ, Posch HE (1986) A new sensing material for optical oxygen measurement, with the indicator embedded in an aqueous phase. Mikrochim Acta 90(5):359–366Google Scholar
  236. 236.
    Wolfbeis OS, Oehme I, Papkovskaya N, Klimant I (2000) Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background. Biosens Bioelectron 15:69–76Google Scholar
  237. 237.
    Wolfbeis OS, Posch HE, Kroneis HW (1985) Fiber optical fluorosensor for determination of halothane and/or oxygen. Anal Chem 57:2556–2561Google Scholar
  238. 238.
    Woods RJ, Scypinski S, Cline LJ (1984) Transient digitizer for the determination of microsecond luminescence lifetimes. Anal Chem 56(8):1395–1400Google Scholar
  239. 239.
    Wu XJ, Choi MMF (2003) Hydrogel network entrapping cholesterol oxidase and octadecylsilica for optical biosensing in hydrophobic organic or aqueous micelle solvents. Anal Chem 75:4019–4027Google Scholar
  240. 240.
    Wu XJ, Choi MMF (2004) An optical glucose biosensor based on entrapped-glucose oxidase in silicate xerogel hybridised with hydroxyethyl carboxymethyl cellulose. Anal Chim Acta 514(2):219–226Google Scholar
  241. 241.
    Wu XJ, Choi MMF (2004) Spongiform immobilization architecture of ionotropy polymer hydrogel coentrapping alcohol oxidase and horseradish peroxidase with octadecylsilica for optical biosensing alcohol in organic solvent. Anal Chem 76(15):4279–4285Google Scholar
  242. 242.
    Wu XJ, Choi MMF, Wu XM (2004) An organic-phase optical phenol biosensor coupling enzymatic oxidation with chemical reduction. Analyst 129(11):1143–1149Google Scholar
  243. 243.
    Wu X, Choi MMF, Xiao D (2000) A glucose biosensor with enzyme-entrapped sol–gel and an oxygen-sensitive optode membrane. Analyst 125(no. 1):157–162Google Scholar
  244. 244.
    Wu W, Wu W, Ji S, Guo H, Song P, Han K, Chi L, Shao J, Zhao J (2010) Tuning the emission properties of cyclometalated platinum(II) complexes by intramolecular electron-sink/arylethynylated ligands and its application for enhanced luminescent oxygen sensing. J Mater Chem 20(43):9775–9786Google Scholar
  245. 245.
    Xavier MP, Garcia-Fresnadillo D, Moreno-Bondi MC, Orellana G (1998) Oxygen sensing in nonaqueous media using porous glass with covalently bound luminescence Ru(II) complexes. Anal Chem 70:5184–5189Google Scholar
  246. 246.
    Xiang H, Zhou L, Feng Y, Cheng J, Wu D, Zhou X (2012) Tunable fluorescent/phosphorescent platinum(II) porphyrin-fluorene copolymers for ratiometric dual emissive oxygen sensing. Inorg Chem 51(9):5208–5212Google Scholar
  247. 247.
    Xiao D, Choi MMF (2002) Aspartame optical biosensor with bienzyme-immobilized eggshell membrane and oxygen-sensitive optode membrane. Anal Chem 74(4):863–870Google Scholar
  248. 248.
    Xie K, Zhang X-W, Huang L, Wang Y-T, Lei Y, Rong J, Qian C-W, Xie Q-L, Wang Y-F, Hong A, Xiong S (2011) On-line monitoring of oxygen in TubeSpin, a novel, small-scale disposable bioreactor. Cytotechnology 63(4):345–350Google Scholar
  249. 249.
    Xu H, Aylott JW, Kopelman R, Miller TJ, Philbert MA (2001) A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol–gel-based spherical optical nanosensors with applications to Rat C6 glioma. Anal Chem 73(17):4124–4133Google Scholar
  250. 250.
    Xu W, Kneas KA, Demas JN, DeGraff BA (1996) Oxygen sensors based on luminescence quenching of metal complexes: osmium complexes suitable for laser diode excitation. Anal Chem 68(15):2605–2609Google Scholar
  251. 251.
    Xu W, McDonough RC, Langsdorf B, Demas JN, DeGraff BA (1994) Oxygen sensor based on luminescence quenching: Interactions of metal complexes with the polymer supports. Anal Chem 66:4133–4141Google Scholar
  252. 252.
    Xu W, Schmidt R, Whaley M, Demas JN, DeGraff BA, Karikari EK, Farmer BL (1995) Oxygen sensors based on luminescence quenching: interations of pyrene with the polumer supports. Anal Chem 67:3172–3180Google Scholar
  253. 253.
    Yingkui L (2011) High performance oxygen sensing nanofibrous membranes of Eu(III) complex/polystyrene prepared by electrospinning. Spectrochim Acta A 79:356–360Google Scholar
  254. 254.
    Yoshihara T, Yamaguchi Y, Hosaka M, Takeuchi T, Tobita S (2012) Ratiometric molecular sensor for monitoring oxygen levels in living cells. Angew Chem Int Ed 51:4148–4151Google Scholar
  255. 255.
    Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KF (2004) Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 87(2):243–254Google Scholar
  256. 256.
    Zhang G, Chen J, Payne SJ, Kooi SE, Demas JN, Fraser CL (2007) Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence. J Am Chem Soc 129:8942–8943Google Scholar
  257. 257.
    Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T (2010) Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Cancer Res 70(11):4490–4498Google Scholar
  258. 258.
    Zhang G, Palmer GM, Dewhirst MW, Fraser CL (2009) A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat Mater 8:747–751Google Scholar
  259. 259.
    Zhujun Z, Seitz WR (1986) Optical sensor for oxygen based on immobilized hemoglobin. Anal Chem 58(1):220–222Google Scholar
  260. 260.
    Zuo Q, Li B, Zhang L, Wang Y, Liu Y, Zhang J, Chen Y, Guo L (2010) Synthesis, photophysical and oxygen-sensing properties of a novel Eu3+ complex incorporated in mesoporous MCM-41. J Solid State Chem 183:1715–1720Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute of Analytical Chemistry and Food ChemistryGraz University of TechnologyGrazAustria
  2. 2.LinzAustria

Personalised recommendations