Skip to main content

Blind Channel Deconvolution of Real World Signals Using Source Separation Techniques

  • Conference paper
  • 699 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3817))

Abstract

In this paper we present a method for blind deconvolution of linear channels based on source separation techniques, for real word signals. This technique applied to blind deconvolution problems is based in exploiting not the spatial independence between signals but the temporal independence between samples of the signal. Our objective is to minimize the mutual information between samples of the output in order to retrieve the original signal. In order to make use of use this idea the input signal must be a non-Gaussian i.i.d. signal. Because most real world signals do not have this i.i.d. nature, we will need to preprocess the original signal before the transmission into the channel. Likewise we should assure that the transmitted signal has non-Gaussian statistics in order to achieve the correct function of the algorithm. The strategy used for this preprocessing will be presented in this paper. If the receiver has the inverse of the preprocess, the original signal can be reconstructed without the convolutive distortion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: NIPS 1995, vol. 8. MIT Press, Cambridge (1996)

    Google Scholar 

  2. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7 (1995)

    Google Scholar 

  3. Bellings, S.A., Fakhouri, S.Y.: Identification of a class of nonlinear systems using correlation analysis. Proc. IEEE 66, 691–697 (1978)

    Google Scholar 

  4. Boer, E.D.: Cross-correlation function of a bandpass nonlinear network. Proc. IEEE 64, 1443–1444 (1976)

    Article  Google Scholar 

  5. Cardoso, J.P.: Source separation using higher order moments. In: Proc. ICASSP (1989)

    Google Scholar 

  6. Comon, P.: Independent component analysis, a new concept? Signal Processing 36 (1994)

    Google Scholar 

  7. Comon, P.: Separation of sources using higher order cumulants. Advanced Algorithms and Architectures for Signal Processing (1989)

    Google Scholar 

  8. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications (1991)

    Google Scholar 

  9. Jacoviti, G., Neri, A., Cusani, R.: Methods for estimating the autocorrelation function of complex stationary process. IEEE Trans. ASSP 35, 1126–1138 (1987)

    Article  Google Scholar 

  10. Jutten, C., Hérault, J.: Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing 24 (1991)

    Google Scholar 

  11. Nguyen Thi, H.L., Jutten, C.: Blind source separation for convolutive mixtures. IEEE Transactions on Signal Processing 45(2) (1995)

    Google Scholar 

  12. Nikias, C.L., Petropulu, A.P.: Higher-Order Spectra Analysis – A Nonlinear Signal processing Framework. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  13. Nikias, C.L., Raghuveer, M.R.: Bispectrum estimation: A digital signal processing framework. Proc. IEEE 75, 869–890 (1987)

    Article  Google Scholar 

  14. Prakriya, S., Hatzinakos, D.: Blind identification of LTI-ZMNL-LTI nonlinear channel models. Biol. Cybern. 55, 135–144 (1985)

    Google Scholar 

  15. Puntonet, C., Mansour, A., Jutten, C.: A geometrical algorithm for blind separation of sources, GRETSI (1995)

    Google Scholar 

  16. Taleb, A., Jutten, C.: Nonlinear source separation: the post-nonlinear mixtures. In: Proc. ESANN (1997)

    Google Scholar 

  17. Taleb, A., Solé, J., Jutten, C.: Blind Inversion of Wiener Systems. In: Proc. IWANN (1999)

    Google Scholar 

  18. Taleb, A., Solé, J., Jutten, C.: Quasi-Nonparametric Blind Inversion of Wiener Systems. IEEE Transactions on Signal Processing 49(5), 917–924 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Solé-Casals, J., Monte-Moreno, E. (2006). Blind Channel Deconvolution of Real World Signals Using Source Separation Techniques. In: Faundez-Zanuy, M., Janer, L., Esposito, A., Satue-Villar, A., Roure, J., Espinosa-Duro, V. (eds) Nonlinear Analyses and Algorithms for Speech Processing. NOLISP 2005. Lecture Notes in Computer Science(), vol 3817. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11613107_32

Download citation

  • DOI: https://doi.org/10.1007/11613107_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-31257-4

  • Online ISBN: 978-3-540-32586-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics