RFID-Tags for Anti-counterfeiting

  • Pim Tuyls
  • Lejla Batina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3860)


RFID-tags are becoming very popular tools for identification of products. As they have a small microchip on board, they offer functionality that can be used for security purposes. This chip functionality makes it possible to verify the authenticity of a product and hence to detect and prevent counterfeiting. In order to be successful for these security purposes too, RFID-tags have to be resistant against many attacks, in particular against cloning of the tag. In this paper, we investigate how an RFID-tag can be made unclonable by linking it inseparably to a Physical Unclonable Function (PUF). We present the security protocols that are needed for the detection of the authenticity of a product when it is equipped with such a system. We focus on off-line authentication because it is very attractive from a practical point of view. We show that a PUF based solution for RFID-tags is feasible in the off-line case.


RFID counterfeiting authentication ECC Physical Unclonable Function (PUF) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weis, S.A., Juels, A.: Authenticating pervasive devices with human protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)Google Scholar
  2. 2.
    Batina, L., Mentens, N., Preneel, B., Verbauwhede, I.: Side-channel aware design: Algorithms and architectures for elliptic curve cryptography over GF(2n). In: Proceedings of the IEEE International Conference on Application-Specific Systems, Architectures, and Processors (ASAP 2005), Samos, Greece, July 23-15. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  3. 3.
    Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Beth, T., Gollmann, D.: Algorithm engineering for public key algorithm. IEEE Journal on Selected Areas in Communications 7(4), 458–465 (1989)CrossRefGoogle Scholar
  5. 5.
    Blake, I., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Mathematical Society Lecture Note Series. Cambridge University Press, London (1999)zbMATHGoogle Scholar
  6. 6.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong Key-Insulated Signature Schemes. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Reyzin, M., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Gassend, B., et al.: Silicon physical unknown functions. In: Proc. 9th ACM Conference on Computer and Communications Security (November 2002)Google Scholar
  9. 9.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Controlled physical random functions. In: Proceedings of the 18th Annual Computer Security Conference (December 2002)Google Scholar
  10. 10.
    Johnson, D., Menezes, A.: The elliptic curve digital signature algorithm (ECDSA). Technical Report CORR 99-34, Department of Combinatorics & Optimization, University of Waterloo, Canada (February 24, 2000),
  11. 11.
    Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Juels, A.: Strengthening EPC Tags against Cloning (March 2005) (manuscript)Google Scholar
  13. 13.
    Lenstra, A., Verheul, E.: Selecting cryptographic key sizes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 446–465. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Linnartz, J.P., Tuyls, P.: New shielding functions to enhance privacy and prevent misuse of biometric templates. In: Kittler, J., Nixon, M. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 238–250. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  17. 17.
    Montgomery, P.: Speeding the pollard and elliptic curve methods of factorization. Mathematics of Computation 48, 243–264 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Neve, M., Peeters, E., Samyde, D., Quisquater, J.-J.: Memories: a Survey of their Secure Uses in Smart Cards. In: 2nd International IEEE Security In Storage Workshop (IEEE SISW 2003), Washington DC, USA, pp. 62–72 (2003)Google Scholar
  19. 19.
    Skoric, B., Tuyls, P.: Secret key generation from classical physics, September 2005. Philips Research Book Series (2005)Google Scholar
  20. 20.
    Pappu, R.: Physical one-way functions. Science 297(6), 2026 (2002)CrossRefGoogle Scholar
  21. 21.
    Simmons, G.J.: Identification of data, devices, documents and individuals. In: Proc. 25th Ann. Intern. Carnahan Conference on Security Technology, Taipei, Taiwan, ROC, October 1–3, pp. 197–218. IEEE, Los Alamitos (1991)CrossRefGoogle Scholar
  22. 22.
    Skoric, B., Tuyls, P., Ophey, W.: Robust key extraction from physical unclonable functions. In: Ionnidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 407–422. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Tuyls, P., Goseling, J.: Capacity and examples of template protecting biometric authentication systems. In: Maltoni, D., Jain, A.K. (eds.) BioAW 2004. LNCS, vol. 3087, pp. 158–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Tuyls, P., Skoric, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.: Information theoretical security analysis of physical unclonable functions. In: S. Patrick, A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 141–155. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    van Dijk, M., Tuyls, P.: Robustness, reliability and security of biometric key distillation in the information theoretic setting. In: Cerf, N., Cardinal, J. (eds.) Proceedings of the 26th Benelux Symposium on Information Theory. Proceedings of the WIC, vol. 26 (2005)Google Scholar
  27. 27.
    Wolkerstorfer, J.: Scaling ECC Hardware to a Minimum. In: ECRYPT workshop - Cryptographic Advances in Secure Hardware - CRASH 2005 (September 6-7, 2005) (invited talk)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pim Tuyls
    • 1
  • Lejla Batina
    • 2
  1. 1.Philips Research LaboratoriesEindhovenThe Netherlands
  2. 2.Katholieke Universiteit Leuven, ESAT/COSICLeuven-HeverleeBelgium

Personalised recommendations