Advertisement

Fair Identification

  • Omkant Pandey
  • Julien Cathalo
  • Jean-Jacques Quisquater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3860)

Abstract

This paper studies a new problem called fair identification: given two parties, how should they identify each other in a fair manner. More precisely, if both parties are honest then they learn each other’s identity, and if anyone is cheating then either both of them learn each other’s identity or no one learns no information about the identity of the other. We propose a security model and a provably secure optimistic fair identification protocol.

Keywords

Group Signature Signature Scheme Group Manager Secret Data Active Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures. IEEE Journal on Selected Areas in Communication 18(4), 593–610 (2000)CrossRefGoogle Scholar
  3. 3.
    Ateniese, G.: Efficient Verifiable Encryption (and Fair Exchange) of Digital Signatures. In: Tsudik, G. (ed.) Sixth ACM Conference on Computer and Communication Security and Privacy, November 1999, pp. 138–146. ACM, New York (1999)CrossRefGoogle Scholar
  4. 4.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provably Secure Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Boldyreva, A., Micali, S.: Public-key Encryption in a Multi-User Setting: Security Proofs and Improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 259. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and analysis of authentication and key-exchange protocols. In: Procceedings of the 30th annual Symposium on the Theory of Computing – STOC, pp. 419–428. ACM Press, New York (1998)Google Scholar
  7. 7.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simpliefied requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption – How to Encrypt with RSA. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party case. In: Procceedings of the 27th annual Symposium on the Theory of Computing – STOC, pp. 57–66. ACM Press, New York (1995)Google Scholar
  11. 11.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Camenisch, J., Michels, M.: A Group Signature Scheme with Improved Efficiency. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 160–174. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  15. 15.
    Chabbane, H., Phan, D.H., Pointcheval, D.: Public Traceability in Traitor Tracing Schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Chen, L., Kudla, C., Paterson, K.G.: Concurrent Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 287–305. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Chor, B., Fiat, A., Naor, M.: Tracing traitor. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)Google Scholar
  18. 18.
    Chor, B., Fiat, A., Naor, M., Pinkas, B.: Tracing traitor. IEEE Transaction on Information Theory 46(3), 893–910 (2000)zbMATHCrossRefGoogle Scholar
  19. 19.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 13. Springer, Heidelberg (1998)Google Scholar
  20. 20.
    Dodis, Y., Reyzin, L.: Breaking and Repairing Optimistic Fair Exchange from PODC 2003. In: Yung, M. (ed.) ACM Workshop on Digital Rights Management (DRM), pp. 47–74 (2003)Google Scholar
  21. 21.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions of identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  22. 22.
    Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is Secure under the RSA Assumption, Available on eprint archive – http://eprint.iacr.org/2000/061
  23. 23.
    Jakobsson, M., Pointcheval, D.: Mutual authentication and key-exchange protocols for low power devices. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 178–195. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Kilian, J., Petrank, E.: Identity Escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)Google Scholar
  26. 26.
    Pandey, O., Cathalo, J., Quisquater, J.-J.: Fair Identification (2005), Full version, available at http://www.cs.ucla.edu/~omkant
  27. 27.
    Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Shoup, V.: OAEP Reconsidered, Available on eprint archive – http://eprint.iacr.org/2000/060

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Omkant Pandey
    • 1
  • Julien Cathalo
    • 2
  • Jean-Jacques Quisquater
    • 2
  1. 1.Department of Computer ScienceUCLA 
  2. 2.UCL Crypto GroupBelgium

Personalised recommendations