A Round and Communication Efficient Secure Ranking Protocol

  • Shaoquan Jiang
  • Guang Gong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3860)


In this work, we initiate the study of realizing a ranking functionality (m 1, ⋯, m n )↦ (r 1, ⋯, r n ) in the non-adaptive malicious model, where \(r_{i}=+ \sharp \{m_{j}:m_{j} < m_{i}\}\). Generically, it has been solved by a general multi-party computation technique (via a circuit formulation). However, such a solution is inefficient in either round complexity or communication complexity. In this work, we propose an efficient construction without a circuit. Our protocol is constant round and efficient in communication complexity as well. Furthermore, we show it is directly secure in the non-adaptive malicious model (i.e., without a compiler, as is used in many general constructions).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellare, M., Boldyreva, A., Micali, S.: Public-Key Encryption in a Multi-user Setting: Security Proofs and Improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Goldwasser, S.: Verifiable Partial Key Escrow. In: ACM CCS 1997, pp. 78–91 (1997)Google Scholar
  3. 3.
    Cramer, R., Damgård, I., Nielsen, J.: Multiparty Computation from Threshold Homomorphic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Cramer, R., Damgard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Cramer, R., Damgård, I., Maurer, U.: Gemeral secure multi-party computation from any linear secret sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Franklin, M.: Comlexity and Security of Distributed Protocols, Ph. D thesis, Columbia University (1993)Google Scholar
  7. 7.
    Franklin, M.: Haber, Joint encryption and message-efficient computation. Journal of Cryptology 9(4), 217–234 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Galil, Z., Haber, S., Yung, M.: Cryptographic computation: secure fault-tolerant protocol and the public-key model. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 135–155. Springer, Heidelberg (1988)Google Scholar
  9. 9.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC 1987, New York City, May 25-27, pp. 218–229 (1987)Google Scholar
  10. 10.
    Hadzilacos, V., Halpern, J.: Message-Optimal Protocols for Byzantine Agreement (Extended Abstract). In: PODC 1991, pp. 309–323 (1991)Google Scholar
  11. 11.
    Hirt, M., Maurer, U.: Robustness for Free in Uncondidtional Multi-party Computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with application to random efficient secure computation. In: FOCS 2000, pp. 294–304 (2000)Google Scholar
  13. 13.
    Jakobsson, M., Juels, A.: Mix and match: secure function evaluation via ciphertexts. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Shoup, V.: On Formal Models for Secure Key Exchange, Available at
  15. 15.
    Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS 1982, pp. 160–164 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shaoquan Jiang
    • 1
    • 2
  • Guang Gong
    • 2
  1. 1.Department of Computer ScienceUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations