Universally Composable Oblivious Transfer in the Multi-party Setting

  • Marc Fischlin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3860)


We construct efficient universally composable oblivious transfer protocols in the multi-party setting for honest majorities. Unlike previous proposals our protocols are designed in the plain model (i.e., without a common reference string), are secure against malicious adversaries from scratch (i.e., without requiring an expensive compiler), and are based on weaker cryptographic assumptions than comparable two-party protocols. Hence, the active participation of auxiliary parties pays off in terms of complexity. This is particularly true for the construction of one of our building blocks, an efficient universally composable homomorphic commitment scheme. Efficient solutions for this problem in the two-party setting are not known, not even in the common reference string model.


Commitment Scheme Oblivious Transfer Honest Party Malicious Adversary Common Reference String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Brassard, G., Crpeau, C., Robert, J.-M.: All-or-Nothing Disclosure of Secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987)Google Scholar
  3. 3.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: STOC 1988, pp. 1–10. ACM Press, New York (1988)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Micali, S.: Non-Interactive Oblivious Transfer and Applications. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Canetti, R.: Universally Composable Security: A new Paradigm for Cryptographic Protocols. In: FOCS 2001. IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  6. 6.
    Canetti, R.: On Universally Composable Notions of Security for Signature, Certification and Authentication. In: CSFW 2004. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  7. 7.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of Partial Knowledge and Simplified Desing of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  8. 8.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively Secure Multi- Party Computation. In: STOC 1996, pp. 639–648. ACM Press, New York (1996)CrossRefGoogle Scholar
  10. 10.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-Party and Multi-Party Secure Computation. In: STOC 2002, pp. 494–503. ACM Press, New York (2002)CrossRefGoogle Scholar
  11. 11.
    Crépeau, C.: Equivalence Between Two Flavors of Oblivious Transfer. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 350–354. Springer, Heidelberg (1988)Google Scholar
  12. 12.
    Damgård, I., Nielsen, J.: Improved Non-Committing Encryption Schemes Based on a General Complexity Assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. Comm. ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The Relationship between Public Key Encryption and Oblivious Transfer. In: FOCS 2000. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  15. 15.
    Garay, J., MacKenzie, P.: Concurrent Oblivious Transfer. In: FOCS 2000, pp. 314–324. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  16. 16.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game. In: STOC 1987, pp. 218–229. ACM Press, New York (1987)CrossRefGoogle Scholar
  17. 17.
    Garay, J., MacKenzie, P., Yang, K.: Efficient and Universally Composable Committed Oblivious Transfer and Applications. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 297–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Kilian, J.: Founding Crytpography on Oblivious Transfer. In: STOC 1988, pp. 20–31. ACM Press, New York (1988)CrossRefGoogle Scholar
  19. 19.
    Lindell, Y.: Lower Bounds for Concurrent Self Composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Naor, M., Pinkas, B.: Efficient Oblivious Transfer Protocols. In: SODA 2001, pp. 448–457. ACM Press, New York (2001)Google Scholar
  21. 21.
    Naor, M., Pinkas, B., Sumner, R.: Privacy Preserving Auctions and Mechanism Design. In: Proceedings of the 1st Conference on Electronic Commerce, pp. 129–139. ACM Press, New York (1999)CrossRefGoogle Scholar
  22. 22.
    Prabhakaran, M., Sahai, A.: New Notions of Security: Achieving Universal Composability without Trusted Setup. In: STOC 2004, pp. 242–251. ACM Press, New York (2004)CrossRefGoogle Scholar
  23. 23.
    Rabin, M.: How to Exchange Secrets by Oblivious Transfer. Technical Report TR 1981, Aiken Computation Laboratory (1981)Google Scholar
  24. 24.
    Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptology 4, 161–174 (1991)zbMATHCrossRefGoogle Scholar
  25. 25.
    Shamir, A.: How to Share a Secret. Comm. ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marc Fischlin
    • 1
  1. 1.Institute for Theoretical Computer ScienceETH ZurichSwitzerland

Personalised recommendations