Advertisement

Toward the Fair Anonymous Signatures: Deniable Ring Signatures

  • Yuichi Komano
  • Kazuo Ohta
  • Atsushi Shimbo
  • Shinichi Kawamura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3860)

Abstract

Ring signature scheme, proposed by Rivest et al., allows a signer to sign a message anonymously. In the ring signature scheme, the signer who wants to sign a document anonymously first chooses some public keys of entities (signers) and then generates a signature which ensures that one of the signer or entities signs the document. In some situations, however, this scheme allows the signer to shift the blame to victims because of the anonymity. The group signature scheme may be a solution for the problem; however, it needs a group manager (electronic big brother) who can violate the signer anonymity without notification, and a complicated key setting.

This paper introduces a new concept of a signature scheme with signer anonymity, a deniable ring signature scheme ( \(\mathcal{DRS}\)), in which no group manager exists, and the signer should be involved in opening the signer anonymity. We also propose a concrete scheme proven to be secure under the assumption of the DDH (decision Diffie Hellman) problem in the random oracle model.

Keywords

Group signatures Ring signatures DLP CDH DDH Random oracle model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., Warinschi, B.: On the minimal assumptions of group signature schemes. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. IEICE Transactions Fundamentals of Electronics, Communications and Computer Sciences E87–A(1), 131–140 (2004)Google Scholar
  3. 3.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. of the First ACM Conference on Computer and Communications Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Boneh, D.: The decision diffie-hellman problem. In: Buhler, J. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspect. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Chaum, D.: Zero-knowledge undeniable signatures. In: Damgård, I. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)Google Scholar
  10. 10.
    Chaum, D., Pedersen, P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  11. 11.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  13. 13.
    Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Ogata, W., Kurosawa, K., Heng, S.-H.: The security of the fdh variant of chaum’s undeniable signature scheme. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 328–345. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the security of cryptographic schemes. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 526–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuichi Komano
    • 1
  • Kazuo Ohta
    • 2
  • Atsushi Shimbo
    • 1
  • Shinichi Kawamura
    • 1
  1. 1.Toshiba CorporationKawasakiJapan
  2. 2.The University of Electro-CommunicationsTokyoJapan

Personalised recommendations