Advertisement

Stand-Alone and Setup-Free Verifiably Committed Signatures

  • Huafei Zhu
  • Feng Bao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3860)

Abstract

In this paper, a novel construction of stand-alone and setup-free verifiably committed signatures from RSA – an open problem advertised by Dodis and Reyzin in their speech [16] is presented. The methodology used in this paper is reminiscent of the concept of verifiably encrypted signatures introduced by Asokan et al [1, 2] . We suggest to encrypt only a random salt used to generate a virtual commitment that will be embedded into Cramer-Shoup’s signature scheme and to prove the validity of the signature with respect to this encrypted value. Our construction is provably secure assuming that the underlying Cramer-Shoup’s signature scheme is secure against adaptive chosen-message attack, and Paillier’s encryption is one-way. We thus provide an efficient solution to Dodis-Reyzin’s open problem.

Keywords

Off-line fair-exchange Setup-free Stand-alone property Verifiably committed signature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asokan, N., Schunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: ACM Conference on Computer and Communications Security, pp. 7–17 (1997)Google Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures (Extended Abstract). In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bao, F.: An Efficient Verifiable Encryption Scheme for Encryption of Discrete Logarithms. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 213–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bao, F., Deng, R., Mao, W.: Efficient and practical fair exchange protocols with off-line TTP. In: IEEE Symposium on Security and Privacy, pp. 77–85. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  5. 5.
    Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Boyar, J., Chaum, D., Damgård, I., Pedersen, T.P.: Convertible Undeniable Signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–205. Springer, Heidelberg (1991)Google Scholar
  7. 7.
    Boldyreva, A.: Efficient threshold signatures, multisignatures and blind signatures based on the Gap Diffie Helman group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: A Fair Protocol for Signing Contracts (Extended Abstract). In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 43–52. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Boyd, C., Foo, E.: Off-Line Fair Payment Protocols Using Convertible Signatures. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 271–285. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Shoup, V.: Signature scheme based on the Strong RAS assumption. In: 6th ACM Conference on Computer and Communication Security, November 1999, ACM Press, Singapore (1999)Google Scholar
  13. 13.
    Damgård, I.: Practical and Provably Secure Release of a Secret and Exchange of Signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 200–217. Springer, Heidelberg (1994)Google Scholar
  14. 14.
    Damgård, I., Jurik, M.: Client/Server Tradeoffs for Online Elections. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 125–140. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Damgård, I., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Dodis, Y., Reyzin, L.: Breaking and Repairing Optimistic Fair Exchange from PODC 2003. In: ACM Workshop on Digital Rights Management (DRM) (October 2003)Google Scholar
  17. 17.
    Garay, J.A., Jakobsson, M., MacKenzie, P.D.: Abuse-Free Optimistic Contract Signing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer, Heidelberg (1999)Google Scholar
  18. 18.
    Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fujisaki, E., Okamoto, T.: Statistically zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Fujisaki, E., Okamoto, T.: Statistical zero-knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Guillou, L., Quisquater, J.: A practical zero-knowledge protocol fitted to security microprocessors minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)Google Scholar
  23. 23.
    Mao, W.: Verifiable Escrowed Signature. In: Mu, Y., Pieprzyk, J.P., Varadharajan, V. (eds.) ACISP 1997. LNCS, vol. 1270, pp. 240–248. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  24. 24.
    Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In: PODC 2003, pp. 12–19 (2003)Google Scholar
  25. 25.
    Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  26. 26.
    Park, J., Chong, P., Siegel, H.: Constructing fair-exchange protocols for E-commerce via distributed computation of RSA signatures. In: PODC 2003, pp. 172–181 (2003)Google Scholar
  27. 27.
    Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  28. 28.
    Stadler, M.: Publicly Verifiable Secret Sharing. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (1996)Google Scholar
  29. 29.
    Zhu, H.: Constructing Committed Signatures from Strong-RSA Assumption in the Standard Complexity Model. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 101–114. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Huafei Zhu
    • 1
  • Feng Bao
    • 1
  1. 1.Department of Information SecurityI2R, A-StarSingapore

Personalised recommendations