Verification of Parameterized Timed Systems

  • Parosh Aziz Abdulla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3829)


One of the prominent methods for program verification is that of model checking [CES86,QS82]. In the last decade there has been an extensive research effort in order to extend the applicability of model checking to systems with infinite state spaces. There are at least two reasons why a system may be infinite-state:

– A system may operate on data structures with unbounded domains. Examples include real-valued clocks in timed automata [AD94], stacks in push-down automata [BEM97], queues in communicating processes [AJ96], counters in counter machines, etc.

– A system can also be infinite-state because it is parameterized. This means that the description of the system is parameterized by the number of components inside the system. In such a case, we would like to verify correctness of the system regardless of the number of processes.

We consider systems which contain both sources of infiniteness; namely parameterized systems of processes each of which behaves as a timed automaton.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AD94]
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [ADM04a]
    Abdulla, P.A., Deneux, J., Mahata, P.: Multi-clock timed networks. In: Proc. LICS 2004 IEEE Int. Symp. on Logic in Computer Science, pp. 345–354 (2004)Google Scholar
  3. [ADM04b]
    Abdulla, P.A., Deneux, J., Mahata, P.: Open, closed and robust timed networks. In: Proc. INFINITY 2004, 6th International Workshop on Verification of Infinite-State Systems (2004)Google Scholar
  4. [AJ96]
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Information and Computation 127(2), 91–101 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. [AJ03]
    Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical timed processes. Theoretical Computer Science 290(1), 241–264 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  6. [AJNS04]
    Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 348–360. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. [ALdR05]
    Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Simulation-based iteration of tree transducers. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 30–44. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. [BEM97]
    Bouajjani, A., Esparza, J., Maler, O.: Reachability Analysis of Pushdown Automata: Application to Model Checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243. Springer, Heidelberg (1997)Google Scholar
  9. [BGK+96]
    Bengtsson, J., Griffioen, W.O.D., Kristoffersen, K.J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Verification of an audio protocol with bus collision using UPPAAL. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 244–256. Springer, Heidelberg (1996)Google Scholar
  10. [BLW03]
    Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. [BT02]
    Bouajjani, A., Touili, T.: Extrapolating Tree Transformations. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 539. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. [CES86]
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specification. ACM Trans. on Programming Languages and Systems 8(2), 244–263 (1986)zbMATHCrossRefGoogle Scholar
  13. [GS92]
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal of the ACM 39(3), 675–735 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [KMM+01]
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. Theoretical Computer Science 256, 93–112 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [LS92]
    Lynch, N.A., Shavit, N.: Timing-based mutual exclusion. In: IEEE Real-Time Systems Symposium, pp. 2–11 (1992)Google Scholar
  16. [MT01]
    Mason, I.A., Talcott, C.L.: Simple network protocol simulation within maude. In: Futatsugi, K. (ed.) Electronic Notes in Theoretical Computer Science, vol. 36. Elsevier, Amsterdam (2001)Google Scholar
  17. [QS82]
    Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–352. Springer, Heidelberg (1982)Google Scholar
  18. [SBM92]
    Schneider, F.B., Bloom, B., Marzullo, K.: Putting time into proof outlines. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600. Springer, Heidelberg (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  1. 1.Uppsala UniversitySweden

Personalised recommendations