Skip to main content

Dense Subgraph Problems with Output-Density Conditions

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

We consider the dense subgraph problem that extracts a subgraph with a prescribed number of vertices that has the maximum number of edges (total edge weight in the weighted case) in a given graph. We give approximation algorithms with improved theoretical approximation ratios—assuming that the density of the optimal output subgraph is high, where density is the ratio of number of edges (or sum of edge weights) to the number of edges in the clique on the same number of vertices. Moreover, we investigate the case where the input graph is bipartite, and design a pseudo-polynomial time approximation scheme that can become a PTAS even if the size of the optimal output graph is comparatively small. This is a significant improvement in a theoretical sense, since no constant-ratio approximation algorithm was known previously if the output graph has o(n) vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Karger, D., Karpinski, M.: Polynomial Time Approximation Schemes for Dense Instances of NP-hard Problems. In: Proc. STOC 1995, pp. 284–293 (1995)

    Google Scholar 

  2. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of Finding Dense Subgraphs. Discrete Applied Math 121, 15–26 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily Finding Dense Subgraphs. Journal of Algorithms 34, 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation, Combinatorial Optimization Problems and Their Approximability Properties. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  5. Czygrinow, A.: Maximum Dispersion Problem in Dense Graphs. Operation Research Letters 27, 223–227 (2000)

    Article  MathSciNet  Google Scholar 

  6. Feige, U.: Relations between Average Case Complexity and Approximation Complexity. In: Proc. STOC 2002, pp. 534–543 (2002)

    Google Scholar 

  7. Feige, U., Kortsarz, G., Peleg, D.: The Dense k-Subgraph Problem. Algorithmica 29, 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hochbaum, D.S.: Approximating clique and biclique problems. J. Algorithms 29, 174–200 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A Fast Parametric Maximum Flow Algorithm and Applications. SIAM J. Comput. 18, 30–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kortsarz, G., Peleg, D.: On Choosing a Dense Subgraph. In: Proc. FOCS 1993, pp. 692–701 (1993)

    Google Scholar 

  11. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Suzuki, A., Tokuyama, T. (2005). Dense Subgraph Problems with Output-Density Conditions. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_28

Download citation

  • DOI: https://doi.org/10.1007/11602613_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics