Skip to main content

Hardness and Approximation of Octilinear Steiner Trees

  • Conference paper
Algorithms and Computation (ISAAC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3827))

Included in the following conference series:

Abstract

Given a point set K of terminals in the plane, the octilinear Steiner tree problem is to find a shortest tree that interconnects all terminals and edges run either in horizontal, vertical, or ± 45° diagonal direction. This problem is fundamental for the novel octilinear routing paradigm in VLSI design, the so-called X-architecture.

As the related rectilinear and the Euclidian Steiner tree problem are well-known to be NP-hard, the same was widely believed for the octilinear Steiner tree problem but left open for quite some time. In this paper, we prove the NP-completeness of the decision version of the octilinear Steiner tree problem.

We also show how to reduce the octilinear Steiner tree problem to the Steiner tree problem in graphs of polynomial size with the following approximation guarantee. We construct a graph of size \(O({{n^{2}}\over{\varepsilon^{2}}})\) which contains a (1+ε)–approximation of a minimum octilinear Steiner tree for every ε > 0 and n = |K|. Hence, we can apply any α-approximation algorithm for the Steiner tree problem in graphs (the currently best known bound is α ≈ 1.55) and achieve an (α + ε)- approximation bound for the octilinear Steiner tree problem. This approximation guarantee also holds for the more difficult case where the Steiner tree has to avoid blockages (obstacles bounded by octilinear polygons).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://www.xinitiative.org (2005)

  2. Teig, S.L.: The X architecture: not your father’s diagonal wiring. In: SLIP 2002: Proceedings of the 2002 international workshop on System-level interconnect prediction, pp. 33–37. ACM Press, New York (2002)

    Chapter  Google Scholar 

  3. Paluszewski, M., Winter, P., Zachariasen, M.: A new paradigm for general architecture routing. In: Proceedings of the 14th ACM Great Lakes Symposium on VLSI (GLSVLSI), pp. 202–207 (2004)

    Google Scholar 

  4. Garey, M., Johnson, D.: The rectilinear Steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics 32, 826–834 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. Garey, M., Graham, R., Johnson, D.: The complexity of computing Steiner minimal trees. SIAM Journal on Applied Mathematics 32, 835–859 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coulston, C.: Constructing exact octagonal Steiner minimal trees. In: ACM Great Lakes Symposium on VLSI, pp. 1–6 (2003)

    Google Scholar 

  7. Arora, S.: Polynomial time approximation schemes for the Euclidean traveling salesman and other geometric problems. Journal of the ACM 45, 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mitchell, J.: Guillotine subdivisions approximate polygonal subdivisions: A simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM Journal on Computing 28, 1298–1309 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rao, S., Smith, W.: Approximating geometric graphs via “spanners” and “banyans”. In: Proceedings of the 30th ACM Symposium on Theory of Computing, pp. 540–550 (1998)

    Google Scholar 

  10. Kahng, A., Mǎndoiu, I., Zelikovsky, A.: Highly scalable algorithms for rectilinear and octilinear Steiner trees. In: Proceedings 2003 Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 827–833 (2003)

    Google Scholar 

  11. Zhu, Q., Zhou, H., Jing, T., Hong, X., Yang, Y.: Efficient octilinear Steiner tree construction based on spanning graphs. In: Proceedings 2004 Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 687–690 (2004)

    Google Scholar 

  12. Nielsen, B., Winter, P., Zachariasen, M.: An exact algorithm for the uniformly-oriented Steiner tree problem. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 760–772. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 770–779 (2000)

    Google Scholar 

  14. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM Journal on Applied Mathematics 14, 255–265 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  15. Althaus, E., Polzin, T., Daneshmand, S.: Improving linear programming approaches for the Steiner tree problem. Research Report MPI-I-2003-1-004, Max-Planck-Institut für Informatik, Saarbrücken, Germany (2003)

    Google Scholar 

  16. Du, D.Z., Hwang, F.: Reducing the Steiner problem in a normed space. SIAM Journal on Computing 21, 1001–1007 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lee, D., Shen, C.F.: The Steiner minimal tree problem in the λ-geometry plane. In: Nagamochi, H., Suri, S., Igarashi, Y., Miyano, S., Asano, T. (eds.) ISAAC 1996. LNCS, vol. 1178, pp. 247–255. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  18. Lin, G.H., Xue, G.: Reducing the Steiner problem in four uniform orientations. Networks 35, 287–301 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Koh, C.: Steiner problem in octilinear routing model. Master thesis, National University of Singapore (1995)

    Google Scholar 

  20. Shen, C.: The λ-geometry Steiner minimal tree problem and visualization. PhD thesis, Northwestern University, Evanston, IL, USA (1997)

    Google Scholar 

  21. Brazil, M., Thomas, D., Winter, P.: Minimum networks in uniform orientation metrics. SIAM Journal on Computing 30, 1579–1593 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Brazil, M., Thomas, D., Weng, J., Zachariasen, M.: Canonical forms and algorithms for Steiner trees in uniform orientation metrics. Technical Report TR-02/22, DIKU, Department of Computer Science, Copenhagen, Denmark (2002), To appear in Algorithmica

    Google Scholar 

  23. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–104. Plenum Press, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Müller-Hannemann, M., Schulze, A. (2005). Hardness and Approximation of Octilinear Steiner Trees. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_27

Download citation

  • DOI: https://doi.org/10.1007/11602613_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30935-2

  • Online ISBN: 978-3-540-32426-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics